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Chapter 1
Introduction

A solver should be able to address different types and theories in order to
be usable on real examples. These theories could be radically different, for
example the reals that are uncountable and the booleans that have only two
elements. In order to conciliate them, solvers use techniques called combination
techniques.

This report is organized as follows, in a first part a survey on existing
combination techniques and in a second part a first formalization of the new
combination scheme developed in the SOPRANO solver.
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Chapter 2
State of the art

2.1 Basics: theories, models and solvers

Definitions

A signature Σ is composed by a set ΣC of constants, a set ΣF of function
symbols, and a set ΣP of predicate symbols. The logical symbols ∨, ∧, ≈, ¬
they are predefined and are not considered as symbols of any theory. We use
the standard notions of (Σ-)term, atom, literal, formula. We use ≈ to denote
equality’s logical symbol. We identify a conjunction of formulas φ1 ∧ . . . φn

with the set φ1, . . . , φn.

If φ is a term or a formula, vars(φ) denotes the set of variables occurring in
φ. Similarly, if Φ is a set of terms or a set of formulas, vars(Φ) denotes the set
of variables occurring in Φ.

For a signature Σ, a Σ-interpretation A with domain A over a set V of
variables is a map which interprets each variable x as an element xA ∈ A, each
constant c ∈ ΣC as an element cA ∈ A, each function symbol f ∈ ΣF of arity
n as a function fA : A 7→ A, and each predicate symbol P ∈ ΣP of arity n as a
subset PA of An . We adopt the convention that calligraphic letters A, B, ...
denote interpretations, while the corresponding Roman letters A, B, ... denote
the domains of the interpretations.

For a Σ-term t over V , we denote with tA the evaluation of t under the
interpretation A. Likewise, for a Σ-formula φ over V , we denote with φA the
truth-value of φ under the interpretation A. If T is a set of Σ-terms over V ,
we denote with TA the set {tA|t ∈ T}.

A formula φ is satisfiable, if it is true under some interpretation, and un-
satisfiable otherwise.

A Σ-structure is a Σ-interpretation over an empty set of variables.

A Σ-theory T is a class of Σ-structure called T -model [9]. A formula φ
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is T -satisfiable if it is satisfied by some T -model, and it is T -unsatisfiable
otherwise. The union of two theories T and S, written T ∪ S, is a set of
(Σ ∪ Ω)-interpretation which is in T when restricted to Σ symbols and in S
when restricted to Ω symbols.

Example 1. The theory of arrays is defined by all the interpretations that
verify the following axioms:

∀a, x, v.select(store(a, x, v), x) ≈v
∀a, x, y, v. x 6≈ y =⇒ select(store(a, x, v), y) ≈select(a, y)

A solver for a theory T is an algorithm that, given a set of Σ literals, tells if
they are T satisfiable or unsatisfiable. A solver is said complete if it is correct
when it says that φ is unsatisfiable. A solver is said sound if it is correct when
it says that φ is satisfiable.

Let ST a solver of the theory T , and SS a solver of the theory S, the com-
bination of ST and SS consists in creating a solver for T ∪S using ST and SS .
A trivial problem is that generally the (Σ∪Ω)-terms are not accepted by both
ST and SS since they will use unknown symbols. But more importantly even
if the terms do not mix, the symbols, and literals are sent to the corresponding
solver, the two subset of the problem could be satisfiable but not the problem
itself. Indeed the solvers could disagree on the interpretation.

f(x) 6= f(y) ∧ x− y = 0

Thus the need to design combination techniques.

2.2 Nelson-Oppen

The Nelson-Oppen (NO) technique[15] aims at being able to use efficient de-
cision procedures together. Previous research on automated reasoning focused
on specific theories, with few symbols such as theory of integers under + and
≤, the theory of arrays under select, store (select(store(a, x, v), x) = v), the
theory of equality with uninterpreted function symbols. Each of these theories’
decision procedures works very differently from each other, so the combination
technique does not require additional hypothesis on them. So for NO a deci-
sion procedure is an algorithm that, given a set of literals, tells if they can be
satisfied at the same time or not. The basic NO combination technique will
take decision procedures for specific theories and create a decision procedure
for the union of these theories. Firstly we will see some formal definitions, a
description of the basic combination technique, the limitation of the applica-
bility and, finally, optimization of the decision by requiring more operations
from the decision procedure. Secondly we will go through extensions that have
been proposed.
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2.2.1 Approach
Let Σ and Ω two disjoints signature, let ST a solver of the theory T , and SS a
solver of the theory S.

The combination method consists of three steps, described below:

1. Purification step This phase separates the T and S parts. Every oc-
currence of a Σ symbol as parameter of a Ω symbol (and conversely) is
replaced by a fresh variable, and an equality between this variable and
the replaced term is added. At the end the resulting set of literals can
be partitioned into the set φT of Σ-literals and the set φS of Ω-literals.
φT ∧ φS and φ are equisatisfiable in (Σ ∪ Ω)-literals.

2. Arrangement step This phase nondeterministically guesses an equiv-
alence relation E over the set vars(φT ) ∧ vars(φS) of variables shared
by φT and φS . From this equivalence relation E the set of literal φE is
generated:

φE ={x ≈ y|x, y ∈ vars(φT ) ∪ vars(φS), and x =E y}
{x 6≈ y|x, y ∈ vars(φT ) ∪ vars(φS), and x 6=E y}

3. Checking step If φT ∧ φE is T -satisfiable and φS ∧ φE is S-satisfiable,
φ is satisfiable. Otherwise the check fails.
If, for all the possible equivalence classes of the arrange phase, the check
phase fails, φ is unsatisfiable.

Soundness and correctness

The technique is complete since for every A (T ∪ S)-model an equivalence
relation E corresponds and if a subset of a set of literals is unsatisfiable for a
subset of the theory, the set of literals is unsatisfiable for all the theory.

The proof of soundness is more interesting and requires that the two theories
are stably infinite.

Definition 1. A Σ-theory T is stably infinite if every quantifier-free Σ-formula
ψ is T-satisfiable if and only if it is satisfied by a T-interpretation A whose
domain A is infinite.

Since the two theories are supposed stably infinite, φT ∧ φE is satisfied
by an infinite T-interpretation A and φS ∧ φE is satisfied by an infinite S-
interpretation B. Since vars(φE) are the only symbols shared by A and B in
φT and φS , they both satisfy φE and they have the same cardinality, a (T ∪S)-
interpretation C can be built from A and B that satisfies φT and φS . So φ is
satisfiable.

SOPRANO (ANR-14-CE28-0020) from The National Research Agency (ANR) – c© 2016
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At the end the hypothesis on which original NO apply are that the two
theories must be disjoints and stably-infinite. We will see that some refinements
of NO are able to lift the stably-infinite part, but none remove the need of
disjointness.

Propagations

Additionally the technique allows for one solver to send implied equalities or
disequalities to the other solvers. It reduces the number of choices that the
combination technique must make and it allows to reach unsatisfiability faster.

Non-convex theories

Non-convex theories are theories that introduce equality disjunctions. Formally
let C be a conjunction of literals and e1, . . . , en equalities, a theory is convex
if when ¬(C =⇒ (e1 ∨ · · · ∨ en) is unsatisfiable then there exists i such that
¬(C =⇒ ei) is also unsatisfiable. The theory of linear rational arithmetic
is convex and the theory of linear integer arithmetic is non-convex. All the
theories with finite domains are non-convex. The non-convex theories often
need to do case analysis. With the limited interface given to the solver they
have to do it internally. Since case analysis is very time consuming, it is
preferable to do it in one place such as in the DPLL(T) framework[16], where
the solvers are inside the backtracking engine.

An interface is added that allows the solver to communicate to the frame-
work the disjunction to do. Nelson and Oppen already proposed an extension of
their combination framework where theories instead of propagating one equality
can propagate a disjunction of equality. The more general split-on-demand[?]
allows to send arbitrary clauses.

The cases of non-convex theories with finite domain need a generalization
of the stably-infinite hypothesis for being combined by NO.

2.2.2 Refinements
The NO combination technique has been refined in several direction: numbers
of pairs to consider, enhanced search procedure of the equivalence relation,
more generic theories.

Care graph

The Care graph technique [11] reduces the number of pairs to consider by
requiring from the theories to give a graph, called care graph, of what the solver
cares about. Only the equality or disequality between the edges of all these
graphes will be decided. It allows to directly focus on the potential problems.
For example for the solver of uninterpreted functions, given a function f of
arity 1, if the terms f(t1) and f(t2) are used, t1 and t2 are an edge of the care
graph. But if they never appear at the same parameter position of the same
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symbol, they will not be, since the fact they are equal or disequal does not
have any impact on the solver.

Model based combination

Model based combination [5] biases the first choice to try using the partial
models of the theories. The idea is to minimize the differences with the current
internal model of the theories. For example, if the current assignment given by
the simplex of the arithmetic solver sets two terms to the same constant, the
first equivalence relation E tries to make these two terms equal.

Soundness hypothesis

Different works tried to loosen the stably infinite hypothesis, since many use-
ful theories do not verify it (e.g., booleans, enumerations). In [21] they used
a multi-sorted logic, instead of the mono-sorted presented before, in order to
restrict the stably infinite property to the shared sorts. In [18] and completed
in [10], this result have been extended to theories of data structures. These
theories have the particularity to define their interpretation by using the inter-
pretation of another sort (list of something). These two papers define polite
theories, which are theories that can grow the cardinality of their satisfiable
interpretation by any amount, and that can create variable witnesses for all the
needed elements in a satisfiable interpretation. They prove that any solver can
be combined with solver for a polite theory. The care graph technique has also
been devised for polite theory in [11]. In [14] they extend the polite notion, to
the more general and already existing notion of parametric theories, however
it requires not just decision procedures but strong solvers that could reason
additionally on constraints about the cardinality of the sorts.

2.3 Shostak theories

Shostak in 1984 [20] proposed a combination algorithm for the theory of equal-
ity with uninterpreted symbols and specific equational theories, the so-called
Shostak theories, for which there exist efficient procedures for, respectively,
reducing terms to canonical form (canonizers) and turning equations into sub-
stitutions (solvers). Examples of such theories include the theories of linear
arithmetic, pairs, bit-vectors etc.

This method interleaves canonization, equation solving and substitution ap-
plication in a very tightly coupled way. For instance, to decide the satisfiability
of the following conjunction of literals

f(x)− x = 0 ∧ f(2x− f(x)) 6= x

the solver of linear arithmetic can be used to solve the first equation f(x)−x =
0. The resulting substitution σ = {f(x) 7→ x} is then applied to the rest of the
formula σ(f(2x− f(x))) 6= σ(x). This yields the literal f(2x−x) 6= x which in
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turn is canonized to f(x) 6= x. Applying σ again gives the unsatisfiable literal
x 6= x.

Shostak’s method offered an apparently more efficient algorithm, but of
restricted scope. What exactly the scope of Shostak’s method is has remained
unclear for a long time [19, 2, 8, 13]. Furthermore, the method was based on the
claim that the disjoint union of two (and therefore any finite number of) Shostak
theories is a Shostak theory. However, the validity of this property received
minimal serious attention and Shostak himself provided little evidence that this
observation was correct. Nevertheless, the Shostak algorithm has influenced
the design of several leading tools for automated verification, including PVS
[17], SVC [1], and STeP [4]. It is also closely related to the ICS [7] decision
procedure.

2.4 Constraint Programming

Constraint programming (CP) started with different initial requirements. The
emphasis is more on local constraints than on global ones (like simplex). With
simplifications, CP solvers attach to each term one domain (e.g., integer in-
tervals) and schedule constraints that will read the domains of some terms to
improve the domains of another (e.g., the constraints t1 + t2 = t3 could read
t2 ∈ [−1;−4] and t3 ∈ [1; 5] and deduce that t1 ∈ [−3; 4]. If at that time
t1 ∈ [0; 10], then its domain is updated with [0; 4]). At some point, for exam-
ple when no constraint could improve the domains of any terms, a decision is
made, for example the domain of a term is split and one side is tried.

If there are no more choices to be made, every variable has an interpreta-
tion, and since the propagation at least propagates constants, the problem is
satisfiable. On the other hand if the domain of a term becomes empty, the
sequence of choices is impossible and the engine backtracks to the last choice
made. If there is no last choice the problem is unsatisfiable. The difference
with decision procedures is that the satisfiable interpretation is explicitly given
and that all the constraints agree with it.

It is not clear that CP uses a combination framework, since everything
seems to be one algorithm. However if we take each constraint separately we
could say that the combination framework of CP consists in the explicit sharing
of the model constructed by each constraint, in a way similar but a lot more
eager than model base combination 2.2.2. The equivalence relation doesn’t
have to be guessed since the value of all the terms is already guessed. CP
handles very easily non-convex theories since it can naturally decide on the
domains of terms until obtaining a singleton.

At the end we can distinguish the CP and NO techniques (Shostak being in
the middle) by how the communication between the theories is done; CP would
be like shared memory (efficient, liberal, hard to do right) and NO would be
like message passing (safer, cleaner, restricted).
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Chapter 3
Popop Domain Framework

The design of the POPOP solver is part of the SOPRANO project. One of
the goals of the SOPRANO project is to allow easy addition of solvers of new
theories.

As in CP and DPLL/NO, the prover refines a partial interpretation until
all the terms are interpreted and verifies the constraint or that a constraint
is broken. In SAT the refinement takes the form of setting boolean values to
boolean variables. In CP the refinement takes the form of domain splitting or
labeling (set a domain to a singleton). In POPOP these choice are abstracted
into a notion of possible refinements that we will call the choices. For each
choice the partial model can be refined in different ways. The fundamental
requirement for correctness is that once all the choices have been made the
partial interpretation is a full interpretation and that we can check correctly
if all the constraints are verified. It is a difference with traditional CP where
the propagation must always be correct, here they only must be correct on
constants. When a partial interpretation is found to not verify the constraint,
information is gathered on which choices were wrong. This information is kept
as a new constraint. The constraint must be implied by the initial constraint,
it should be verified by every interpretation that satisfy the original problem.
It is Conflict Driven Clause Learning (CDCL)[22] except that the literals can
be anything that can be interpreted, it doesn’t have to be a term of the input
language. Finally as in CDCL, it is possible not only to learn to exclude those
wrongly made choices, but also others impossible choices with the same reason.

This setting is similar to MC-Sat[6, 12] except that MC-Sat limits the
choices of setting variables to constants, and they use the result of propagation
only for checking the emptiness of the domain, not for new propagations (no
transitive propagation). It is the contrary of what CP does. In POPOP we
want to have the possibility to experiment with all the possible spectrum of
quantity of propagation, as few as in SAT/MC-SAT or as much as in CP.

Adding a new solver is as simple as in the CP framework, for the refinement
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phase (also called propagation phase), since a full interpretation is built at the
end.The interface that the solver can interact with is more precise than in CP
in a way similar to NO. Moreover contrary to the traditional CP, conflicts are
computed as in CDCL solvers. We will devised these techniques and their
integration in SOPRANO in report D2.3. So for now we will just say that
from a conflict some information can be gathered to indicate which choices are
impossible.

In the next sections we will dive in the technicalities of POPOP. Popop
tries to be quite general because it should be a play-ground for testing different
trade-offs. First will see the basic notions, then the interface between the engine
and the solvers, finally solvers for different theories.

3.1 Basics

The engine does not manipulate terms but only equivalence class cl. An equiv-
alence class can be obtained from a term but from an equivalence class one can
not obtain the set of terms it represents. To each equivalence class domains
dom are associated.

The terms are not directly converted to cl. Usual terms are not easy data-
structure to work with. Depending on the theory, particular ones are more
suited. For example, for linear arithmetic, a mapping from cl to rational con-
stants is simpler than a tree of additions and multiplications. Moreover the
part of the terms that is not part of linear arithmetic is abstracted using its
equivalence class, in a way similar to the purification phase 1 of NO. These
particular data-structures are called semantical values since they have a simi-
lar role to that in Shostak 2.3. To each semantical value is associated a cl in
an injective way. Fresh equivalence class could also be created for example to
describe top-level existential variables.

New domains and new kind of semantical values can be defined. One can
also add daemons, that are pieces of code that would be executed when some
events happen. The engine does not directly recognize the notion of theory,
it is only a high-level notion. We consider that a POPOP’s theory is a set of
domains, kinds of semantical values and daemons used together.

The terms are converted to cl directly after parsing in a bottom-up pass,
using semantical values along the way.

Example 2. The term a ≈ a+ f(a, a+ 5) + a+ 3 is the equivalence class cl8
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with

cl8 ←{cl0, cl7}eq

cl7 ←{3, cl0 7→ 2, cl6 7→ 1}arith

cl6 ←App(cl1, cl5)
cl5 ←App(cl0, cl4)
cl4 ←{5, cl0 7→ 1}arith

{cl0, . . . , cln}eq has the interpretation of a disjunction of equality
∨

i6=j cliA =
cljA. The set is useful for representing the distinct operator. distinct(cl0, . . . , cln)
is represented concisely by ¬{cl0, . . . , cln}eq.

{c, cl0 7→ c0, . . . , cln 7→ cn}arith has the interpretation cA + cA
0 ∗ cl0A + · · ·+

cA
n ∗ clnA and we call them arithmetic polynomials, P = Q× (Cl 7−→finite Q)
(Cl 7−→finite Q is the set of mappings p from Cl to Q with finitely many cl that
have p(cl) 6= 0).

3.2 Operations

The POPOP’s engine provides a number of operations that can be used when
implementing theories, and some others that theories must provide so that the
engine interacts with them.

Theories interact with the engine through the following operations:

• get_dom: get the current domain associated to an equivalence class

• get_repr: get the representative of an equivalence class

• set_dom: modify a domain of a cl. Done immediately, i.e., not queued

• merge_cl: ask to merge two cl

• set_sem: ask to merge the cl of a semantical value and another cl

• attach a direct daemon to an event with some additional data

• attach a delayed daemon to an event with some additional data

• register_choice: register the need for a choice

• conflict: raise that a conflict has been found

Possible events are the following :

• eventdom: when a specified domain of a specified cl changes
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• eventreg: when a specified cl is registered

• eventsem: when the cl of any semantical value of a specified kind is reg-
istered

• eventrepr: when a class is no longer the representative of its class

Since from a semantical value one can obtain its associated cl, set_sem
seems redundant with merge_cl. In fact set_sem has a specific behavior when
the cl of the semantical value is not registered; it make sure this cl is not the
new representative. That enforces that if one does not create a new semantical
class, one just adds a new semantical value to an existing class, the number of
representative is bounded, and so termination can be proved.

The operation register_choice allows a theory to indicate that it needs
to make a choice. It is similar to domain splitting or labeling done in CP,
in the same way that there are heuristics for prioritizing these choices in CP,
priorities can be given to these choices. It is also similar to split-on-demand[3]
from the SMT community, where a theory can send a disjunctive lemma to the
SAT solver. However, the theories do not have to build a boolean formula, the
choice is more abstract, and the boolean theory of POPOP uses this mechanism
to some of its boolean choices.

The engine interacts with each domain D through the following operations:

• merged: tell if two values of the domain are merged

• merge: ask to merge the domain D of two given classes

• def_dom: a default element for the domain, used when a domain have
not yet been associated to an equivalence class

• do_choice: ask if a previously registered choice is still needed, and if it is
the case to modify the state of the engine accordingly (for example with
set_dom)

Before doing the operation do_choice, the engine sets a backtracking point
by saving its state so that it could come back to this point during the conflict
analysis phase started by conflict.

The engine does not apply the modification immediately otherwise daemons
would be executed during execution of other daemons which makes it very hard
to write them, to reason about them and to enforce invariants. Therefore, all
modifications are delayed, except set_dom and set_sem. Moreover they are
applied with the following priorities, the highest priority first:

1. set_dom: modify a domain of a cl

2. set_sem: ask to merge a cl and the cl of a semantical value
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3. direct_daemon: run a direct daemon for which an event occured

4. merge_dom (internal): merge a domain of two cl

5. merge_cl_end (internal): check that the domains of two cl are merged,
fail if it is not the case, otherwise make one the representative of the
other

6. merge_cl: start merging two classes

7. delayed_daemon: run delayed daemon for which an event occured

Further priority can be applied for the order of execution of the delayed
daemons. On the contrary the direct daemons are executed in a fixed first-in-
first-out way.

The direct daemons are useful for restoring invariants, since they have a
high priority and fixed execution order.

3.2.1 Booleans
The boolean theory has no specific capabilities. It defines Sbool which rep-
resents a negated or non-negated conjunction of negated or non-negated cl:
Sbool = {>,⊥} × (Cl 7−→finite {>,⊥}). Let an interpretation A and (n,m) ∈
Sbool, its interpretation is:

(n,m)A = n⊗
∨

cl∈m

m(cl)⊗ clA

with ⊗ the xor function (we recall that ⊥⊗ b = b and >⊗ b = ¬b)

We are not using conjunctive normal form because it is needed neither for
propagation nor for learning, moreover it simplifies the handling of boolean
formulas inside terms (ite). The negation is not a separate semantical value
because it reduces the number of classes to create. Otherwise on usual prob-
lems, there are two classes per boolean variable instead of one : one positive
and one negative.

The boolean domain is the usual boolean latticeDbool = {{>}, {⊥}, {⊥,>}},
except the bottom value {} is not present because the conflict is diagnosed (and
conflict used) before updating the domain. The default value def_dom is
{⊥,>} the top of the lattice. The test merged is the set equality. The function
merge is the set intersection of the domain of the two classes to merge, except
if they are disjoint where it uses conflictto indicate a conflict.

For each boolean variables cl, a delayed daemon waits on eventreg that this
cl is registered and in that case register register_choice the choice to set it
on {>} or {⊥}.

A delayed daemon waits with eventsem for the registration of a class cl of
the semantical value of kind Sbool, when that happens it attaches the event
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eventdom for cl and all the classes contained1 in the semantical value to the
propagation daemon with the semantical value as data.

The propagation daemon, is a delayed daemon that propagates forward
and backward information. When the engine wakes up the daemon with a
semantical value (n,m)Sbool associated to the class cl:

• if for a class cl′ ∈ m, get_dom(cl) ⊗ m(cl) = {>} using set_dom the
domain Dbool of cl is set to >⊗ n (forward propagation).

• if get_dom(cl) = {b} and b⊗n = ⊥, for every cl′ ∈ m, using set_dom the
domain Dbool of cl’ is set to ⊥⊗m(cl′) (backward propagation).

• if for all but one cl1 with m′(cl1) = n the cl′ ∈ m, get_dom(cl′) =
{⊥} , then cl1 is merged with cl using merge_cl (forward and backward
propagation).

If the booleans are combined with another theory, instead of using set_dom
this propagator merges the class using merge_cl to one of two predefined, by
the theory, class being true and false. In that way the booleans propagate
equalities.

3.2.2 Equalities
The propagation of equalities is straighforward, a daemon waits for each equali-
ties if its boolean values is known or if the terms are equals. The only particular
point is that a domain is used to represent that classes must be distinct, it uses
the usual tagging technique: each time terms are disequal (the result of the
equality is false), we add to their domain a fresh integer. During merge the
domain of the two classes are checked to have an empty intersection. During
propagation if all the terms have the same tag in their domain, the equality is
known to be false.

Even if the equalities are boolean literal, it is not always needed to decide
on it. For example if the arguments are booleans we know that at some point
it will be decided if they are true or false. So since the input languages of
POPOP are sorted, we can distinguish equalities where we will decide on them
(eg. uninterpreted sort) and the others (eg. booleans).

3.2.3 Linear rational arithmetic
One can implement Shostak theories, using domains and direct daemons. For
example with the theory of linear rational arithmetic equalities. We reuse
arithmetic polynomials Pfrom example 2, and we define a new kind of se-
mantic values Sarith = P for arithmetic. The equivalence classes associated

1In the implementation an algorithm similar to two watched literals allows to wait on
less classes, wait until all but one domain class is known.

SOPRANO (ANR-14-CE28-0020) from The National Research Agency (ANR) – c© 2016



CHAPTER 3. Popop Domain Framework SOPRANO D2.1-D2.2— 19/22

to arithmetic terms are computed as in example 2 using Sarith. We define a
new domain called Darith = P ∪ {I} which holds the normalized arithmetic
polynomial, I is used when the normalized arithmetic polynomial is its owned
representative. By overloading the notation we define Darith : Cl 7→ P with:

Darith(cl) =
{

get_repr(cl) if get_dom(cl) = I

get_dom(cl) otherwise

We define norm : P 7→ P that substitutes each cl in the polynomial by
Darith(cl).

The operations on Darith and the following direct daemons are defined:

• the merged function is the mathematical equality on P ∪ I

• a direct daemon waits on eventsem for Sarith and , let p ∈ Sarith be the
semantic value and cl its equivalence class. The domain Darith of cl is
set to norm p. This invariant is thus enforced during merge.

• the merge function, is here similar to the solving function of Shostak 2.3.
For two classes to merge cl1 and cl2, the two arguments given to the
solve function are Darith(cl1) and Darith(cl2). If no substitution exists the
conflict is reported using conflict. Otherwise the substitution cls 7→ ps

is recorded by setting the domain Dbool of cls to ps (cls had before the
domain I because of the invariant), except if the polynomial is reduced
to a class ps = clp, in which case merge_cl is call on cls and clp. The
substitution will be applied to the domain of cl1 and cl2 by the direct
daemon.

• For every equality on rationals a choice is added.

3.3 Development

The refinement/propagation part of the engine is now stable and doesn’t change
anymore. No special cases have been needed for the currently defined theory
(for example for boolean like in SAT or uninterpreted functions like in Shostak).
Solver for theories are added one by one, and each time tests are added for new
features or when bugs are found. Currently there is 160 tests that are run in
default mode and with 9 differents seeds. By default POPOP is completely
deterministic, but an option allows to randomize some parts: choice of the
representative, choice of the pivot, order of the argument of conjunctions and
disjunctions. A test could succeed in the default setting but fail when some
randomness is added.

The infrastructure for the learning is present since the beginning but it
often changes because there is a lot to invent. It will be described in D2.3.
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