SOP O

Novel Automatic Solver for Program Analysis

14/09/2016
D1.1-v1-67-gel8edb6

FPA Solver

Confidentiality Client

' Defense Industry
‘ ANR
O

SOP No No
Contractual Funding
Nowvel Automatic Solver for Program Analysis Yes ANR.
WorkPackage
D3.1
Title
FPA Solver
Author(s)
Frangois Bobot — CEA
Zakaria Chihani — CEA
Mohamed Iguernlala — OCamlPro
Bruno Marre — CEA
Revision Number of pages
D1.1-v1-67-gel8edb6 25
Abstract
Keywords
automated reasonning, floating-point arithmetic
Partners Leader of the Workpackage
CEA
OCAMLPRO UPSUD

UPSUD

Contents

Introduction 5
COLIBRI 7
2.1 Domain propagation 7
2.2 Difference logic o 9
2.3 Monotonicity Lo o 12
2.4 Linearization L e 14
2.5 Current and future works oL oL L. 15
Alt-Ergo 17
3.1 Handling of arithmetic constraints in Alt-Ergo 17
3.2 Semantic triggerso 17
3.3 Partial interpretation of arithmetic operators 18
3.4 Inferring better bounds before semantic matching 19
3.5 Handling of generated instances 19
3.6 Current database of axioms 19
3.7 Current resultso o 19
3.8 Current and future works oL oL 21
Conclusion 23
References L 24
Bibliography 25

-

CHAPTER].

Introduction

Floating-point arithmetic tackles an impossible problem: representing real
numbers in finite space. It is an old invention that predates computers (used
in 1914), standardized in early 1980 as the IEEE-754 [1]. Despite their ubig-
uity, floating-point numbers are unnatural to work with due to the different
results obtained even from bounded arithmetic. Consider, for example, that
10

1. 4. 2100 = 9100 while 61+ ..+ 01 # 0.1 x. 10. = 1. because 0.1 is not
representable as a binary floating-point number.

However the semantics of floating-point operators, given by IEEE-754, are
clear: the result of a floating-point operator is the result of the rounding o
of the real operator result (z +.y = o(x + y)). Henceforth, we use only the
formulation with the rounding.

Adacore provided in delivrable D1.2 a set of simple functions with specifi-
cations, for example fig. 1.1. Interestingly many of these examples come from
actual industrial users that had to create new rules (lemmas) for proving their
programs, such as fig. 1.2.

During multiple meetings of the Soprano project, we compared how each
tool (Gappa, COLIBRI, Alt-Ergo +axioms, Alt-Ergo +FP) behaved on the
Adacore examples, leading us to improve those tools. Only too specific prob-

procedure Range_Mult (X : Float_32; Res : out Float__32) is
begin

pragma Assume (X in 5.0 .. 10.0);

Res := X % 2.0 — 5.0;

pragma Assert (Res > X);
end Range_ Mult;

Figure 1.1: Range_Mult example from Adacore

CHAPTER 1. Introduction SOPRANO D3.1— 6 / 25

procedure User_Rule_3 (X, Y : Float; Res : out Boolean) is
begin

pragma Assume (X < Y);

pragma Assume (Y > 0.0);

Res: =X /Y < 1.0

pragma Assert (Res); —— valid
end User_ Rule_ 3;

Figure 1.2: User_Rule_3 example from Adacore

lems remain unsolved (eg. fast inverse approximated square root). The tools
are currently tested by Adacore directly in their toolchain. Some of these
techniques will be used to add floating-point reasoning in the Popop solver.

In a first part we will see the current set of techniques used by COLIBRI
for solving floating-point constraints. In a second part we will describe the
techniques that have been added to Alt-Ergo. These two sets of techniques
differ because the above solvers each already contained some machinery for
handling floating-point numbers.

CHAPTER 2

COLIBRI

2.1 Domain propagation

The Adacore partner provided numerous floating-point examples coming from
problems found by their customers. These examples are code fragments that
they were unable to prove with their current automatic provers, which com-
pelled them to add those fragments as user rules. We show here the mathe-
matical version of these Ada codes.

—0< = < 16777216.0
—-0< y <16777216.0 p = o(—o(x xy)) <z

—0< =z

Domain propagation is at the heart of constraint programming, on which
COLIBRI is based. It consists in associating domains to each term, here a
floating-point interval and a boolean domain, and to each operator ® a design
function that continuously improves the domain of z, y, and = ® y using the
domain of the other terms. For the floating-point operators, COLIBRI consid-
ers o(z ® y) as one operator. This simplifies the design of precise propagators,
as we will see.

In this example, initially, the domains of boolean terms are in {L; T} and
the domains of all the floating-point terms are [—oo; +oo], COLIBRI handles
infinite and finite floating-point numbers (32 bits and 64 bits with nearest-to-
even rounding) but currently not NaN. The domain of the conclusion o(— o(x x
y)) < zis set to { L} and COLIBRI looks for a counter-example. If none exists,
then the property is valid.

The hypothesis restrains the domains of the variables to z, y € [—0; 16777216.0],

z € [—0;400]. The propagators then improve successively the following do-

7

CHAPTER 2. COLIBRI SOPRANO D3.1— 8/25

mains:

o(x x y) €[+0; 281474976710656.]
o(—o(z x y)) €[~281474976710656.; +0]
(o(—o(z xy)) < z) {T}

The last line contradicts the initial setting to L of the relation, so the
domain of the relation is empty. An empty domain means a conflict, which
excludes the existence of a counter-example: the property is proved.

The propagators used in this example are called forward propagators since
they improve the knowledge on the result using the knowledge on the argu-
ments. These propagators use the property that x, —, o are part-wise mono-
tonic.

If the propagators are executed in another order (mostly non-deterministic),
backward propagators will be used. Let s be the next floating-point number
after +0, i.e., the smallest positive subnormal number:

o(—o(z x y)) €[s; +o0]
o(x X y) €[—o0; —s]
o(z x y) €([—o0; —s] N [~0; 281474976 710656.)).

This also leads to an empty domain.

Albeit simple, these propagators make it possible to prove an important
part of the proof obligations that were not provable with an axiomatic ap-
proach, because they require the ability to compute operators on floating-point
constants.

COLIBRI uses other propagations [6] that rely on other properties than
monotonicity. For example, starting with =,y € [+0;1000] and the constraint
o(x—y) = 0(0.1) ~ 0.10000000149 (in 32 bit), the previous propagators applied
once do not reduce the domains significantly. The intervals would become
x € [0(0.1);1000], y € [0;1000]. With the new propagations [6] however, the
intervals get restricted to z € [0(0.1);0(0.225)] and y € [+0;0(0.12499999)].
Indeed = and y cannot be large because of the position of the least-significant

bit of the significand of 0(0.1): 10011001100110011001101 .

COLIBRI has also other, more relational, propagators. For example, from
the knowledge that an argument is equal to the result, if x,y € [0;1024] and
y = x + y, then it can infer x € [0;27 '] because x must be small enough in
order to be absorbed by .

These propagations are local in that they involve only one constraint.

CHAPTER 2. COLIBRI SOPRANO D3.Lg*9/25

2.2 Difference logic

On this example from Adacore, previous propagations are not enough:

50<2<10.0 = o(0(2.0 x 2) —5.0) >z

The domain of 0(0(2.0 x z) —5.0) obtained is [5.0; 15.0]. Thus we need some
global propagations to solve this problem.

Without rounding, the rational numbers problem 5 < z < 10 = (2z) —
5 > x can be solved using distance graph [?] where each node is a term, and
each edge is labeled by an over-approximation of the distance between the two
terms. Let d9(x,y) = y — « be the signed distance between two terms. We
have d2(2x,2z — 5) € {-5}. From z € [5;10], the distance graph deduces
d2(z,2z) € [5;10]. Finally d2(z, 2z — 5) = d9(z,2z) + d9(2z, 2z — 5) € [0; 5],
which proves the inequality.

One could extend that technique to floating-point numbers by computing
d2(y,o(y)) using the size of the ULP (unit in the last place), the distance
between two consecutive floating-point numbers, in the domain of y. Unfortu-
nately that introduces too big of an over-approximation for proving the proper-
ties: d9(z x 2,0(x x 2)) = [~ 72%3; +3 5295] for 64-bit floating-point numbers,
and so we cannot prove that dé(a:, x X 2 —5) is positive.

A way to regain precision is to consider the operation and the rounding as
one operation, in other words to consider the floating-point operator instead
of the rational one. In that case, properties of the floating-point operators can
be used such as:

e multiplications by a power of two are exact, if y and 2y are normalized,
d2(2™y,0(2"y)) = 0 (because the only change the exponent);

e some subtractions are exact, if 0 < x < y and y — z is normalized,
d2(y—z,0(y—z)) = 0 (because y — z is in a binade at least more precise
than the ones of z and y).

Therefore, since
€[5;10]
—_—~
d9(x,2.0 x z)
{0}
+ d9(2.0 x ,0(2.0 x x))
e{-5}
+ d2(0(2.0 x x),0(2.0 x) — 5.0)
e{0}
+ d9(0(2.0 x) — 5.0,0(0(2.0 X) — 5.0))

d9(z,0(0(2.0 x) — 5.0)) =

CHAPTER 2. COLIBRI SOPRANO D3.1— 10/25

we have that d2(z,0(0(2.0 x z) — 5.0)) € [0;5], which proves the fact.

However, this loses precision as soon as properties cannot be applied. For
example if the assertion is

5.0<x<10.0 = o(o(z/2) +25) <=z

then this method cannot solve directly the problem, since d2(y+2.5, o(y+2.5))
is not always negative for y € [2.5; 5]:

Y 2.5 2.5t 2.5+ 9 5+++
o(y +2.5) 5 5 5+ 5+
d2(y +25,0(y+25) 0 e 0 L ip(5)
d9(y,o(y +2.5)) 2.5 25— WG 95 954 ukld)

it follows that the distance d<(x,0(o(x/2) +2.5)) € [2.5 — UIPQ(s) ; —|—ulpT(5)]. The
problem comes from the non-monotonicity of the distance, the biggest error is
not found on the extremity of the interval. Using this technique, the problem
could still be solved by backward propagating that o(o(5) + 2.5) > 2 which
reduces the domain of z to [5;5%] which proves by domain propagation, the

domain is smaller, that o(o(§) 4 2.5) € {5}.

In COLIBRI another definition of distance d” is used to solve this problem
with less propagation. The idea is to use a distance that is based on integers
instead of rationals and tailored to floating-point numbers.

For x € F, num(x) is defined by

pum(z) = 4 | ZEFlw <2 <0}| whenz <0
- [{ze FI0<z2<a}| whenO<uz

with | - | being the cardinality function. The floating-point distance d” is then
defined simply by
d* (z,y) = num(y) — num(z).

As a trivia, if € F is given in IEEE-754 format, it is easy to compute
num(x) since it is the reinterpretation of in int64 (sign,exponent,mantissa).
The next floating-point number is obtained by the successor function and the
previous floating-point number by the predecessor function.

This distance can be a little counter-intuitive because there are more floating-
point numbers near 0, e.g., d*(1,2) > d”(2,3), which implies that, for = €
F with z € [1;2], the distance between z and = + 1 is not a singleton:
d” (z,x +1) € [d7(2,3),d” (1,2)]. Moreover, if z € [~2; 3] then the distance is
over-approximated by d” (z,z + 1) € [d7(3,4),d” (—0.5,0.5)]. Generally, with
z € [2;7), y € [y;7), let m = max(z, 5¢) and ™ = min(7, %y), then:

CHAPTER 2. COLIBRI SOPRANO D3.1—1 1/25

min(d” (z, z F(Z,T+7
Flaoe 1y ¢ | @B DAET L)

max(d” (m,m +7%),d” m,m+y))
d¥ (z,0(2 x)) =d”(1,2)

d” (z, 02" x 2)) =nxd (1,2)

d*(z,0(5%)) =—-nxd"(1,2)

0 when 7 =1
0 when £ =0
a7 (o(22) |7 x 7ly) when 0<2,0<y,1<7

7 (@, 0z xy)) € AT (T, T X Yar) when 0 < 2,0 <y < 1,0 =o(xm X Ym)
7 (0(2 12 x yls) when 0< 2,0 <y < 1,0 < o(2m X ym)
00 B otherwise
—d*(0,7) when y = 0
d”(o(|Z]2, [F)]2 X y) when 0<z,0<y,y<1

d” (z,0(z xy)) €40 whenz =0,1<y
0 when y =1,1 <y
—00 otherwise

d” (1,2) corresponds to the number of floating-point numbers in a binade
and |c]q = 2llog2(c)] " The propagations described are not tight especially for
the multiplication.

If we look back at where d€ was losing precision, we see that d7 is mono-
tonic:
Y 2.5 25T 2.5t 25T+
o(y + 2.5) 5 5 5T 5t

dF (y,0(y +2.5)) 252 2521 925271 2521

COLIBRI uses a distance graph with d” for managing these informations.
It is populated using ordering constraints and operators. The closure of the
graph is done lazily when cycles are created or modified. Domains of the nodes
are improved using the known costs.

With the first example:
e dF(z,0(z x 2.0)) € {d7(1,2)}

e d7 (o(xx2.0),0(0(xx2.0)—5.0)) € [d7(10.0,5.0); d* (20.0, 15.0)] = [-d” (1, 2); —d” (15.0,20.0)]
e d7 (z,0(o(z x 2.0) — 5.0)) € [0;d”7 (1,2) — d” (15.0,20.0)] by transitivity.

CHAPTER 2. COLIBRI SOPRANO D3.1— 12/25

With the second example:

o d7(z,0(5%)) € {—d"(1,2)}
o d7(0(55),0(0(5%)+2.5)) € [d7(5.0,7.5);d7 (2.5,5.0)] = [d” (5.0,7.5);d” (1,2)]
o d¥(z,0(0(5%) +2.5)) € [-d”(1,2) + d” (5.0,7.5); 0] by transitivity.

COLIBRI is able to solve considerably more problems using these tech-
niques. The distance graph is also very useful for solving harder problems.

2.3 Monotonicity
The example User_Rule_4 from Adacore states that
X
X>Y = Y>00 = —<1.0

Y

which leads to proving that the following constraints is unsatisfiable:

X
X>YAY>0.0A0<Y> > 1.0.

We can do the following deduction on the distance of the subterms:

X
— 1.
0<Y>> 0

X
) (Y) > 0(1.0) since 1.0 € F
v >1.0 by contraposition of the monotonicity of o
X>Y since Y >0

which contradicts X <Y, and proves the assertion. More generally:

Lemma 1.

Vo,y,2€ Q0 <y = 0<z> <o(z) = o(z) <o(zxy)

Since the two sides of the implication are on floating-point numbers, it is
used for populating the COLIBRI distance graph. For example, for every edge
that joins a node z and a node that corresponds to the floating-point division
of x by y, such that the floating-point multiplication of z by y already appears
in the graph and such that y € (0; +oc], the distance of the edge can be used to
improve the edge between z and the multiplication. The limitation to already

CHAPTER 2. COLIBRI SOPRANO D3.1— 13/25

known multiplications in the distance graph, and more generally known terms,
is a usual technique for avoiding creating new terms, but it has the drawback
of sometimes losing interesting propagations.

What have been done with division and multiplication can be done with
any monotonic function and inverse function:

Lemma 2. Let D,ECTR, f: D+~ E and f~': E — D such that:

e Va:D, f(f(x) =,

e f increasing,
we have

* Vz €D, oy) € E, o(f(x)) <o(y) = o(x) < o(f*(o(y))),

eVreD yeE off(z)) <o(fly) = z<uy.

Computer arithmeticians are used to this kind of reasoning. However, we
are not aware of a large use in automated floating-point reasoning. Computer
arithmeticians are more interested in cases where the first implication is strict.
For example it is strict for the multiplications by a power of two because such
multiplications are exact:

Lemma 3. Letz,y,z € R and n a natural number, if 0 < y, and 2™ < o (ZE;%)

we have o(2" X y) < o(x)

This improvement is necessary for User_Rule_7 provided by Adacore:

z>0.0

x>y
ofz —y)

Y >z — o —F] <a
o(x — z)

T >z

a >1.0

which is proved by applying first lemma 3 then lemma 2 with the function
t—x—t.

The next example of Adacore (User_Rule_16) is interesting because it is

false and involves the square root function. The assertion is

& €[—7800; +7800]
y €[~7800; +7800] § => o (\/0 (0(a2) — o(y2))) <z
x > abs(y)

CHAPTER 2. COLIBRI SOPRANO D3.1— 14/25

The propagations used to find a counter-example work as following;:

o (Volo@?) —o(y)) >«
o (\/o (o(x?) — o(yQ))) > o(z) since x € F
o (o(z®) = o(y?)) > o(z?) by lemma 2
however o (o(z?) — o(y?)) < o(z?) by monotonicity of — and o
so o (o(z”) = o(y?)) = o(z?) using last two properties

The last deduction indicates that y? is absorbed by z? which indicates that
y € [—6.103515625 - 107°;6.103515625 - 10~3]. More importantly it merges
the nodes of o(z?) — o(y?) and o(x?) which implies that z € [27537-5; 78007].
COLIBRI then tries the bound of the domain of x and indeed x = 27237 is a
counter-example.

On the contrary, if the hypothesis x >= 0.000001 is added, COLIBRI is
able to prove the goal. The first part of the reasonning is the same, except that

#? is now normalized. When o (o(z?) — o(y?)) is merged with o(z?) there is an

edge in the distance graph between o (0 (o(xZ))) and 2 with 22 normalized

which allows to use this known result [4]:

Lemma 4. Let x € F, such that o(z?) is normalized, then o (o(xZ)) =z

This lemma contradicts the strict distance, and proves the goal. The con-
trapositive of this lemma is also implemented which allows in the previous
example to reduce the domain of 2 to subnormal numbers.

As with usual rational arithmetic, difference logic is not enough for all of
arithmetic.

2.4 Linearization

Linearization of floating-point arithmetic formulas has been presented in [2].
The goal is to transform relations on floating-point formulas to relations on lin-
ear rational formulas. The idea is to use already known techniques on lineariza-
tion of rational arithmetic formulas to linear one and to add the linearization
of the rounding operator o.

The main idea is that if « is positive and normalized then for 64-bit floating-
point arithmetic:

CHAPTER 2. COLIBRI SOPRANO D3.1— 15/25

No new example given by Adacore has been proved after adding the lin-
earization in COLIBRI. However simple examples are proved, in a reasonable
time, only with this technique, such as:

0 <z <10.0

= o(o(o(z +y) —x) —y) <0.0001
0<y<10.0} (olofz +3) —) —) <

We are currently experimenting with this technique in COLIBRI. The
simplex is costly so the distance graph is used to know when it is interesting
to use the linearization and on which part of the problem.

2.5 Current and future works

At the start of the project we knew that COLIBRI would solve the simplest
examples of Adacore because of the built-in domain propagation, but we have
been impressed with the number of harder examples solved because of the
distance graph that uses the d” distance. This distance and this algorithm
have never been published and we hope to publish them soon. The techniques
developed during the SOPRANO project based on the monotonicity and the
distance graph are general and make it to solve a large number of hard prob-
lems; we also plan on publishing work on that topic. Despite the encouraging
results (fig. 2.1), we have been reluctant to participate in QF_FP category of
the 2016 SMT-COMP, because COLIBRI forbids models that introduce NaN,
which created a few wrong results.

Our immediate next steps will be:

e Publish the techniques used in COLIBRI.
e Add NaN handling with SMT-LIB2 input language.

e Solving more SMT-LIB2 floating-point problems, the major difficulty be-
ing to create terms that do not appear in the goal in order to apply the
monotonicity property of lemma 2.

e COLIBRI currently uses a simplex that computes with floating-point
number (which could introduce errors); we want to replace it by the
simplex of Alt-Ergo that uses rational number. This simplex has been
extracted by OCamlPro in a standalone library, ocplib-simplex.

The discussions about how COLIBRI and Gappa solved these problems
helped to design the axioms used by Alt-Ergo.

CHAPTER 2. COLIBRI SOPRANO D3.1— 16 / 25

Z3

COLIBRI
Figure 2.1: Results of COLIBRI on the smtlib2 benchmarks of the QF_FP category.
Each cross is a problem, its abscissa is the time taken by COLIBRI, its ordinate is
the time taken by Z3. The timeout is fixed at 6s. We can see that after the startup
time of 0.25s of COLIBRI (written in Eclipse Prolog) it solved nearly all the goal
before Z3 solves them.

CHAPTER 3

Alt-Ergo

3.1 Handling of arithmetic constraints in Alt-Ergo

Alt-Ergo relies on a combination of dedicated algorithms to handle constraints
involving (non-)linear integer and rational arithmetic. For linear arithmetic
equalities, the mechanism of solving and substituting is used to build a conver-
gent rewriting system modulo arithmetic. For inequalities, a Fourier-Motzkin
algorithm and a propagation loop d la CP is used to maintain domains (unions
of intervals) for arithmetic terms. This mechanism also includes some propa-
gators of non-linear arithmetic. A more detailed description of this approach
can be found in [5].

Our objective is to extend this framework in a modular way to be able to
handle floating-point arithmetic. The approach relies on bounds refinement as
for non-linear arithmetic.

3.2 Semantic triggers

In order to integrate floating-point arithmetic in Alt-Ergo, we investigated a
lightweight approach that attempts to heavily reuse existing components of the
solver. Our idea is to write floating-point arithmetic axioms in the (enriched)
syntax of Alt-Ergo, and extend the solver to be able to cope with these axioms.

The starting point of the approach consists in extending the mechanism of
triggers found in SMT solvers to be able to take theory reasoning into account
when instantiating first-order formulas (i.e., axioms). To illustrate this notion
of triggers, consider the universally quantified formula below.

Va,y:real. p(z,y) >z <y+1

To be able to take this formula into account when reasoning, SMT solvers
usually generate finitely many ground instances from it (7.e., substituting the
variables z and y with some constants). This process is guided by heuristics to

17

CHAPTER 3. Alt-Ergo SOPRANO D3.1— 18/25

limit the number of introduced facts, called triggers or guards. In the example
above, a good guard is the term “p(x,y)”: this means that a ground term of
the form “p(a,b)” should be present in the context of the solver to generate the
instance “p(a,b) — a < b+ 17, where z is replaced with a and y is replaced
with b.

Now, consider the following example, where o is a function that rounds a
given rational into its FP representation w.r.t some FP format and to some
rounding mode.

Ve, i,j:real. i <ax<j—o(i) <o(x) <ofj)

There are many (syntactic) triggers that can be chosen for this formula. How-
ever, the triggers are either too permissive or too restrictive. For instance,
choosing the multi-guard “z, 7, 77 (or even “o(x), ¢, j7) is too permissive and
will make the solver unusable in practice. On the other hand, the multi-trigger
“o(x), o(i), o(4)” is too restrictive and may prevent useful instances from being
generated.

Our solution is to use a new kind of theory-aware triggers called semantic
triggers. For the example above, a good guard consists in the combination of
the syntactic trigger “o(x)” with the semantic trigger “x € [z, j]”. This means
that we will generate an instance “c; < a < ¢a — o(c1) < o(a) < o(c)” only if
there exists some ground term “o(a)” that matches “o(z)”, and such that the
domain of a is [¢1, c2].

In our current implementation, we reuse the generic E-matching mechanism
of Alt-Ergo to instantiate syntactic triggers. Semantic triggers are handled by
extending the intervals calculus module with intervals matching capability.

3.3 Partial interpretation of arithmetic operators

Adding semantic triggers in Alt-Ergo is not sufficient to incorporate floating-
point reasoning. We also extended the arithmetic part to be able to “compute”
when operators are applied on constants. For instance, thanks to our semantic
matching, we know that ¢; and ¢y in the fact below are constants. Therefore,
o(e1) and o(eg) can be reduced to some constants d; and dy respectively, which
makes it possible to deduce a domain for o(z).

cpr<a<eca — ofeg) <ofa) <ofer)

becomes
where d; = o(c1) and dy = o(c2).

In the current prototype, we added partial interpretation of FP rounding
operators o (parametrized by the FP format and the rounding mode), for ra-

CHAPTER 3. Alt-Ergo SOPRANO D3.1— 19/25

tional exponentiation, minimum, maximum and absolute value over integers
and rationals, etc.

3.4 Inferring better bounds before semantic matching

As explained in Section 3.1, bounds inference in Alt-Ergo was mainly done by
the Fourier-Motzkin algorithm and a propagation loop a la CP. However, these
approaches may be incomplete. In addition, the terms we are interested in for
the semantic matching step (like the term a in the semantic trigger a € [i, j])
may be uninitialized in the map of intervals. So, we cannot expect to get
(refined) bounds for such terms.

In order to perform semantic matching on refined bounds, we incorporated
a simplex algorithm with maximization capabilities to infer better lower and
upper bounds of terms before intervals matching.

3.5 Handling of generated instances

Given an axiom with syntactic and semantic triggers, and once (syntactic and
semantic) matching succeeded to find a relevant instance for the axiom, the
instance is given back to the SAT solver. Then, the SAT uses the same mech-
anism as for generic instances to handle it.

Another possibility would be to process the instances inside the intervals cal-
culus module to internally saturate the bounds of terms. This is what we did in
our first prototype (deliverable D4.1). Actually, going back to the SAT provides
a more precise idea on how information is propagated inside the demonstrator,
since the SAT solver has a global vision of different reasoning components.
In addition, it enjoys the advantages of (a) handling arbitrarily complicated
axioms, and (b) being extensible for other axiomatized theories.

3.6 Current database of axioms

Instead of inlining floating-point axioms inside the solver, we decided to rather
put them in a separate file written in Alt-Ergo’s input language. This prelude
consists of a set of functions and theories declarations (as shown below) that are
loaded when FP reasoning is activated. It is currently made of approximately
80 axioms on floating-point arithmetic, absolute value, non-linear arithmetic,
square root properties, etc. The advantages of putting the axioms in a separate
text-file is that we get something that is easy to read, to debug, to modify, and
to extend.

3.7 Current results

The prototype that implements the ideas described above is still under de-
velopment. However current results are satisfactory. Our approach is able to

CHAPTER 3. Alt-Ergo SOPRANO

D3.1— 20/25

type fpa_rounding mode = Ne | ToZero | Up | Down | Na

logic float: int, int, fpa_rounding_ mode, real — real

logic abs_real : real — real
theory FPA_ axioms extends NITA =

axiom rounding_operator_1 :
forall x : real.
forall i, j : real.
forall md : fpa_ rounding_ mode.
forall p,m : int
[float (m,p,md,x), x in [i,]]].
i<x<j—

float (m,p,md,i) < float(m,p,md,x) < float(m,p,md,j)

end

theory Abs_ Reals extends NIA =

axiom abs_real interval 1 :
forall x : real

[abs_real(x), abs_real(x) in [?i, ?j], 0. in |?i, ?j[].

0. < abs_real(x)

end

prove 19 of the 27 very hard FPA benchmarks provided by AdaCore. We are
currently considering a larger benchmark made of 1744 proof obligations (POs)
that come from realistic C programs manipulating FP numbers! [3]. All these
POs were proved valid by a combination of Alt-Ergo, Gappa, and the Coq proof
assistant. Thanks to our approach, we improved the resolution success rate of
Alt-Ergo by about 5%, as shown below. Moreover, a portfolio approach? allows
us to prove all the POs that are discharged by Gappa.

Gappa | 86.60 %

Alt-Ergo without FPA | 90.20%
Alt-Ergo + FPA | 94.80%

Alt-Ergo + FPA (Portfolio) | 94.95%

Ihttps://www.lri.fr/~sboldo/research.html

2To be able to experiment with different options of the solver.

https://www.lri.fr/~sboldo/research.html

CHAPTER 3. Alt-Ergo SOPRANO D3.1— 21/25

3.8 Current and future works

Different axes are currently considered:

1. We are still working on the benchmark made of 1744 POs. We think that
we can still improve success rate and resolution time of our prototype,

2. We are also working on the translation of the FP benchmarks of SMT2
(more than 35,000 formluas) to Alt-Ergo via Why3. This would make it
possible to better stress our approach for floating-point arithmetic. Note
that, since our technique does not handle exceptional values, we need an
intermediate layer (Why3) that is able to deal with them.

CHAPTER 4

Conclusion

The SOPRANO project made available two new and very efficient solvers for
proving programs with floating-point numbers: COLIBRI which is now a stan-
dalone prover with new solving techniques for floating-point numbers, and Alt-
Ergo which gained the ability to reason about them.

In the following table, Ok indicates that the problem has been solved in
less than 1s, CE indicates that a counter-example has been found in less than
one second. The column COLIBRI™ corresponds to the version of COLIBRI
before Soprano by using direct call to the API.

COLIBRI™ | COLIBRI | Alt-Ergo

Range_Add Ok Ok Ok
Range_Mult Ok Ok Ok
Range_Add_Mult Ok Ok Ok
Guarded_Div CE! CE

Fibonacci CE! CE
Int_To_Float_Complex Ok Ok
Int_To_Float_Simplel Ok Ok
Int_To_Float_Simple2 Ok Ok
Float_To_Long_Float Ok Ok Ok
Incr_By_Const Ok
Angle_Between

Angle_Between

User_Rule_2 Ok Ok Ok

lwith a tailored strategy

23

CHAPTER 4. Conclusion SOPRANO D3.1— 24/25
COLIBRI™ | COLIBRI | Alt-Ergo

User_Rule_3 Ok? Ok Ok
User_Rule_4 Ok? Ok Ok
User_Rule_5 Ok Ok Ok
User_Rule_6 Ok? Ok Ok
User_Rule_7 Ok? Ok Ok
User_Rule_8 Ok Ok Ok
User_Rule_9 Ok Ok
User_Rule_10 Ok Ok
User_Rule_11

User_Rule_12 Ok Ok Ok
User_Rule_13 Ok Ok Ok
User_Rule_14 Ok Ok Ok
User_Rule_15 Ok Ok Ok
User_Rule_16 CE

Polynomial Ok Ok

The counter example of User_Rule_11 uses NaN which are not yet supported
in the two provers. The case where NaN is forbidden to appear is User_Rule_12.

Adacore is currently modifying the translations of the verification goal to
the input of the solvers for benchmarking the new solving techniques on Ada
programs. The CEA will do the same on C programs.

2particular case of monotony for division

[1]

(3]

(4]

[5]

Bibliography

IEEE standard for binary floating-point arithmetic. Institute of Electrical and Electronics
Engineers, New York, 1985. Note: Standard 754-1985.

Mohammed Said Belaid, Claude Michel, and Michel Rueher. Boosting local consistency
algorithms over floating-point numbers. In Proceedings of the 18th International Con-
ference on Principles and Practice of Constraint Programming, CP’12, pages 127-140,
Berlin, Heidelberg, 2012. Springer-Verlag.

Sylvie Boldo. Deductive Formal Verification: How To Make Your Floating-Point Pro-
grams Behave. Thése d’habilitation, Université Paris-Sud, October 2014.

Sylvie Boldo. Stupid is as stupid does: Taking the square root of the square of a floating-
point number. In Sergiy Bogomolov and Matthieu Martel, editors, Proceedings of the
Tth and 8th International Workshop on Numerical Software Verification, volume 317 of
Electronic Notes in Theoretical Computer Science, pages 50-55, Seattle, WA, USA, April
2015.

Sylvain Conchon, Mohamed Iguernelala, and Alain Mebsout. A collaborative framework
for non-linear integer arithmetic reasoning in Alt-Ergo. In SYNASC 2013.

Bruno Marre and Claude Michel. Improving the floating point addition and subtraction
constraints. In CP 2010.

25

	Introduction
	COLIBRI
	Domain propagation
	Difference logic
	Monotonicity
	Linearization
	Current and future works

	Alt-Ergo
	Handling of arithmetic constraints in Alt-Ergo
	Semantic triggers
	Partial interpretation of arithmetic operators
	Inferring better bounds before semantic matching
	Handling of generated instances
	Current database of axioms
	Current results
	Current and future works

	Conclusion
	References

	Bibliography

