
Appel à projets générique 2014 SOPRANO

Novel Automatic Solver for Program Analysis

Acronyme
Acronym

SOPRANO

Titre du projet Nouveau prouveur automatique pour l’analyse de programmes

Catégorie
Category

Projet Collaboratif en Partenariat Public-Privé
Cooperative Project between Academia and Industry

Type de recherche
Type of research

Recherche Fondamentale
Basic Research

Défi 7 Société de l’information et de la communication

Aide demandée
Grant requested

868ke
Durée du projet
Project duration

42 months

1/ 30

Appel à projets générique 2014 SOPRANO

Contents

Table of contents 2

Summary 3

1 Context, Position and Objectives 5
1.1 Context . 5
1.2 Problem and objectives . 6
1.3 Method . 7
1.4 Challenges, Risks and Fallback . 10
1.5 Results . 10
1.6 State of the Art . 11
1.7 Position of the Project . 12

1.7.1 Adequacy to ANR Call For Project 2014 . 12
1.7.2 Position w.r.t. anterior research projects from members of the consortium . . . 13
1.7.3 Position w.r.t. national and international research teams 14

2 Scientific and Technical Program 15
2.1 General Description . 15
2.2 Project Management . 16
2.3 Description by task . 17
2.4 Planning, summary . 21
2.5 Consortium . 24
2.6 Scientific Justification of Requested Resources . 25

3 Impact 26
3.1 Protection of Results . 26
3.2 Dissemination and Valorisation . 27

References 27

2/ 30

Appel à projets générique 2014 SOPRANO

Abstract

Modern societies crucially rely on digital infrastructures, and it is becoming clear that high-
quality software can be obtained only with the help of proper software verification tools. Today
most major verification approaches rely on automatic external solvers. These solvers, however,
do not fill the current and future needs for verification: lack of satisfying model generation, lack
of reasoning on difficult theories (e.g. floating-point arithmetic), lack of extensibility for specific
or new needs. The SOPRANO project aims at solving these problems and preparing the next
generation of verification-oriented solvers by gathering experts from academia and industry.

We will design a new framework for the cooperation of solvers, focused on model generation
and borrowing principles from SMT (current standard) and CP (well-known in optimization). Our
main scientific and technical objectives are the following. The first objective is to design a new col-
laboration framework for solvers, centered around synthesis rather than satisfiability and allowing
cooperation beyond that of Nelson-Oppen while still providing minimal interfaces with theoretical
guarantees. The second objective is to design new decision procedures for industry-relevant and
hard-to-solve theories. The third objective is to implement these results in a new open-source plat-
form. The fourth objective is to ensure industrial-adequacy of the techniques and tools developed
through periodical evaluations from the industrial partners.

Our main approach is to combine principles coming from both SMT and CP. Roughly speaking,
we seek to add to SMT the extensibility of CP and its native handling of domains, and to CP
the elegant communication interfaces of SMT and its ability to reason over formulas with complex
boolean structures (conflict analysis) and quantifiers. In a canonical SMT solver, the Boolean
Theory enjoys a privileged status. We want to explore how to break this privileged status, in order
to allow theory solvers to contribute more directly to each part of the solving process. For that, we
will develop a notion of first-class domain and first-class conflict analysis.

The major results of the project includes scientific, technological, and industrial benefits. The
project has the potential to deliver significant breakthroughs in automated solving and program
analysis. The major outcome will be a paradigm shift in the combination of automated solvers,
going beyond current standard cooperation frameworks in terms of extensibility, model-synthesis
abilities, and richness of communication between theories. The resulting solvers will be more widely
applicable, easier to tune for specific applications, and potentially more efficient, by encompassing
the best trade-offs from SMT and CP. The major technological output will be the open-source
platform implementing the results, including the cooperation mechanism. OCamlPro and AdaCore,
the industrial partners, will take full advantage of the project to improve their lines of products
and services. Finally, traditional industrial partners of CEA and UPSud will directly benefit from
improvements of the verification tools of the project members.

The Consortium is composed of CEA (software verification tools and CP solving), University
of Paris-Sud (SMT solving and floating-point theory), Inria Rennes (CP solving, floating-point
theory), OcamlPro (software editor and SMT solver developer), Adacore (software solution for Ada
programming language).

Modifications since the pre-proposition. The only modification is the addition of Guillaume
Melquiond (Univ. Paris-Sud), a leading expert in automatic proof of programs manipulating floating-
point numbers.

3/ 30

Appel à projets générique 2014 SOPRANO

Partner Name First name Position Implication Responsability

CEA BOBOT François Research engineer 42 p.m. Project leader
SMT solver
Deductive verification

BARDIN Sébastien Research engineer 11 p.m. Bitvector solver
Array theory
CP solver

BRUNO Marre Research engineer 10 p.m. CP solver
Floating-point

UPSud CONCHON Sylvain Professor 7 p.m. Scientific coordinator
SMT solver
Theory combination

CONTEJEAN Evelyne CR researcher 7 p.m. SMT solver
Rewriting engine

MELQUIOND Guillaume CR researcher 11 p.m. Floating-point
Proof assistant

OcamlPro LE FESSANT Fabrice Scientific advisor 4 p.m. Scientific coordinator
Software editor

IGUERNELALA Mohamed Research engineer 28 p.m. SMT solver

Inria ACHER Mathieu Assistant professor 9 p.m. Scientific coordinator
CP solver

GOTLIEB Arnaud DR researcher 9 p.m. CP solver
Floating-point solver
Bitvector solver

Adacore KANIG Johannes Research engineer 3 p.m. Scientific coordinator
Program verification

MOY Yannick Research engineer 3 p.m. Program verification
Software editor

DROSS Claire Research engineer 4 p.m. SMT solver
Quantified theory

UPSud: University Paris-Sud with Inria

Inria: University Rennes 1 with Inria

4/ 30

Appel à projets générique 2014 SOPRANO

1 Context, Position and Objectives

1.1 Context

Context. Modern societies rely in a crucial way on digital infrastructures, from the Web to medical
health-care systems, e-voting, and smart cars. In that perspective, buggy or insecure software systems
can have dramatic impacts in terms of financial losses, privacy leaks, human casualties, or even ecolog-
ical disasters. Formal methods in general, and formal verification in particular (including both proof

SystemsorldWReal

SystemDigital

olsoTProgramming

...
Analysis

estT ofPro
...

ersSolv

yextensibilit↗
efficiency↗

yapplicabilit↗

SOPRANO

moreused

bugsless

safer
and testing), aim at developing theoretically-
sound methods and tools for designing and im-
plementing high-quality software, where quality
can be understood in terms of safety, security, or
performance.

The dominant verification method in the in-
dustry is testing, which has provided satisfactory
results. However, the cost of testing has been
ever increasing, dwarfing by an order of magni-
tude the cost of the actual development. As soft-
ware is getting larger and more complex, these
costs will keep increasing.

Formal methods have been proposed as an al-
ternative to testing, with the potential to save
cost while increasing the obtained guarantees.
However, a prerequisite to the cost-effectiveness
and acceptance of formal methods is a high de-
gree of automation, that is, the ability to perform
a comprehensive verification with few human intervention.

While formal methods are now a standard in the hardware industry, adoption in the software
industry has been so far only very limited. The crucial difference between these two industries is
precisely the lack of adequate automated reasoning techniques applicable to software, compared to
those that apply to hardware. Yet it is becoming clear that high-quality software can be obtained in
a cost-effective way only with the help of a solid bedrock of proper verification and analysis tools, and
a few impressive success stories have already been obtained for example at Microsoft (Static Driver
Verifier [3]) or at Airbus (with the Frama-C verification platform [27] developed by CEA, Inria, and
University of Paris-Sud). The SPARK technology1 developed by AdaCore has been successfully used
in a variety of contexts (the iFacts air traffic control system in UK, a secure workstation by SecuNet,
etc.).

Since the early 2000’s, there is a significant trend in the research community toward building soft-
ware verification technologies upon automated decision procedures for first-order theories (“solvers”),
which contribute to more automation of these technologies, thus lowering the barrier for their adop-
tion. Besides weakest-precondition calculi dating back to the 1970’s [35], most major recent verification
approaches heavily rely on external solvers, to name a few: Bounded Model Checking [18], Dynamic
Symbolic Execution [39], CEGAR Model Checking [45, 54]. Automatic solvers for theories expressive
enough to model significant parts of program behaviors have become the major building block of
verification and analysis tools, which are themselves basic building blocks for high-quality software.
Improving such solvers in terms of efficiency, expressiveness of the input language, and ease of exten-
sibility, will directly lead to more efficient and applicable software verification tools. In turn, it will
broaden the adoption of formal methods in software development and help to raise the overall quality
of software systems.

Example: Industrial problem. Current SMT solvers, such as those integrated into industrial
verification tools, are extremely efficient for some kinds of problems, e.g. linear arithmetic on real

1http://www.spark-2014.org/

5/ 30

http://www.spark-2014.org/

Appel à projets générique 2014 SOPRANO

numbers, but have some blind spots, typically floating-point numbers or nonlinear arithmetic. This
is a problem for fully automated analysis, because any such blind spot will result in false alarms
requiring careful examination by an expert. An example is the following excerpt of critical industrial
code provided by AdaCore (written in Ada), which implements a simple division between floating-point
numbers while carefully trying to avoid division by zero and numeric overflow:

function protectedFloatDivide(left, right : in Float) return Float is

begin

-- Check for fractional denominator

if right < 1.0 then

-- Guard against divide by zero

if right = 0.0 then

return Float’Last;

-- Guard against overflow where left/right > Float’Last

elsif right < (left / Float’Last) then

return Float’Last;

else

return left / right;

end if;

else

return left / right;

end if;

end protectedFloatDivide;

It happens that the above code is incorrect, because it does not take into account the case where
the divisor is a very small (so-called subnormal) floating-point number. Current solvers based on SMT
technology are unable to produce useful results on this code because of the presence of division, which
is a nonlinear operation. Note that the bug can be found quickly using a technique called bit-blasting,
which encode floating-point numbers and operations into boolean variables and boolean circuits. But
the proof that no overflow occur in a corrected version of the function takes several minutes. Such
a long time for a single proof is unacceptable in automatic tools that have to process hundreds or
thousands of such queries while delivering results in a reasonable time.

Similar problems arise with nonlinear arithmetic, modular integers or bitvectors. The current
technologies are not yet powerful enough for these crucial domains. Finding a satisfactory solution to
these kinds of problems is a powerful driving force for the SOPRANO project.

1.2 Problem and objectives

The scientific problem. Satisfiability Modulo Theory (SMT) [38] with the Nelson-Oppen commu-
nication scheme (NO) [59] is the current de facto standard in verification-oriented solvers. Especially,
NO makes it possible to combine solvers for disjoint theories T1 and T2 into a solver for the combined
theory T1]T2. This is particularly interesting for software verification where constraints are built over
basic data types, typically integers and arrays. Contributing to this fruitful line of research, University
of Paris-Sud has developed the Alt-Ergo prover [21], commercialized by OCamlPro and used both by
the verification toolkit of AdaCore and by Frama-C. Yet SMT solvers show the following shortcomings:

• The cooperation mechanism is centered around satisfiability (proving that a formula has a solu-
tion) while verification is mostly interested in synthesis (finding a solution if any), either for test
- the solution is typically the test input looked for, or for proof - generation of counter-examples
when a property does not hold.

• Search (including decisions and conflict analysis) is done at the boolean level of atomic predicates,
losing high-level information and sometimes making reasoning unduly complex.

• NO does not allow fine-grained cooperation between decision procedures since only (dis-)equalities
of variables are shared, theories must be disjoint, finite-domain theories are not natively sup-
ported and must be encoded into the boolean part of the formula, blurring its high-level structure.

6/ 30

Appel à projets générique 2014 SOPRANO

• A few theories essential for verification still do not have any satisfactory decision procedure:
floating-point arithmetic, nonlinear arithmetic, modular arithmetic, bitvectors, arrays over vari-
ables with domains, etc.

On the other hand, a few teams including CEA and Inria are investigating the use of Constraint-
Programming (CP) for verification purpose, with promising results on floating-point arithmetic [53,
1, 16] or bitvectors [5]. However, synthesis in CP is mostly limited to finite domains, and while it is
rather easy to combine different families of constraints, all information between constraints is shared
without the minimal interface and theoretical guarantees of NO.

Objectives. SOPRANO is a 42-month basic research project gathering experts from academia and
industry in order to prepare the next generation of software verification-oriented solvers. Our main
scientific and technical objectives are the following:

• Obj1: design a new collaboration framework for solvers, centered around synthesis rather
than satisfiability and allowing cooperation beyond that of NO (richer communications, non-
disjoint theories) while still providing minimal interfaces with theoretical guarantees [CEA, Inria,
UPSud];

• Obj2: design new decision procedures for industry-relevant and hard-to-solve theories such
as floating-point arithmetic, nonlinear arithmetic and arrays [CEA, Inria, UPSud];

• Obj3: implement these results in a new open-source platform[CEA, UPSud, OCamlPro];

• Obj4: ensure industrial-adequacy of the techniques and tools developed.

We also add two less technical objectives in order to maximize the project’s impact: progress be-
yond the state of the art (Obj-progress), and visibility and dissemination (Obj-visibility). Success
criteria for these objectives are listed in Table 1.

Objective Criteria

Obj1 • ability to demonstrate advantages over standard approaches (richer communications, richer
theories, more genericity, etc.)
• implementation of the combination framework

Obj2 • design and implementation of a few theory solvers
• experimental evaluation w.r.t. to existing approaches (efficiency, robustness)

Obj3 • availability and robustness of the open-source platform
• experimental evaluation on standard benchmarks (SMT-COMP)
• experimental evaluation on industrial-problem formulas from partners

Obj4 • connection with some verification tools from partners - GATEL and Frama-C (CEA), Why3
(UPSud), SPARK (AdaCore)
• improve the current version of the Alt-Ergo solver (for a quick return on investment)

Obj-progress • publications in top-level conferences and journals in automated reasoning or formal verifi-
cation (IJCAR, LICS, LPAR, CP, CPAIOR, POPL, CAV, ETAPS, VMCAI, etc.)
• research reports

Obj-visibility • dissemination activities (open-source prototype, open-access benchmarks, tutorials, etc.)
• participation and talks at seminars and workshops

Table 1: Success criteria

1.3 Method

Our main approach is to combine principles coming from both SMT and CP. Roughly speaking,
we seek to add to SMT the extensibility of CP and its native handling of domains, and to CP the
elegant communication interfaces of SMT and its ability to reason over formulas with complex boolean
structures and quantifiers. We will also borrow the essential deduction principles of both approaches
and integrate them in a unified framework, especially domain filtering (CP, forward reasoning) and
learning (SMT, backward reasoning). Moreover, we focus on verification-oriented formulas for

7/ 30

Appel à projets générique 2014 SOPRANO

shared

Engine

CC

olBo 1T 2T

...

nT

D

L

P

SMT

shared

Engine

CC

olBo 1T 2T

...

nT

D

L

P

Proposed Method

In a canonical SMT solver, only boolean facts ()

are shared among theories. They come from the

original formula, theory propagation (P), or equal-

ity and disequalities from the Nelson-Oppen combina-

tion. Moreover decisions (D) are done only on literals,

and learning (L) produces only clauses containing lit-

erals involved in the conflict. Finally the search engine

(CDCL) gets information only from the boolean theory

(CC). So even if theories can compute precise specific

informations (, ,), it needs to encode them into

booleans for the communications.

In the proposed method, we want to remove the bot-

tleneck due to boolean communications, by allowing

every theory to use the same operations granted to

the boolean theory. So instead of sharing information

only on the domain of booleans, theories can agree on

common domains (,). Moreover the engine asks

the theories for choices on these domains (CC) and

decision are done on them (D). During learning, the

theory that share domains also share a common way for

computing the conflict (CC) and specific constraints

are learnt (L) from the conflict.

Figure 1: Comparison of SMT with the proposed method

which the consortium has the strongest expertise. Finally, we follow a pragmatic industry-driven
approach, including tight collaboration with industrial partners and feedback from experiments, in
order to keep the project focused on realistic problems and help us to explore relevant trade-offs
between completeness and efficiency.

We describe hereafter how we will address the main technical objectives.

New collaboration framework for solvers. In a canonical SMT solver, the Boolean Theory
enjoys a privileged status: theories communicate through boolean facts, including initial literals and
(dis-)equalities from NO. The solving mechanism (propagation, decision, learning) operates mostly at
this level, while each theory solver maintains its own private information store. We want to explore
how to break this privileged status of the Boolean Theory, in order to allow theory solvers to contribute
more directly to each part of the solving process. Our method is sketched in Figure 1. Especially, we
plan to:

• develop a notion of first-class domain, meaning that solvers will share CP-like domains of
variables (such as intervals or congruence) rather than being limited to (dis-)equalities and
literals. Moreover different domains can be used at once, both because different data types
require different specialized domain and because different domains can be complementary (e.g. we
can use intervals, bitvectors, and floating-point binades for representing interesting facts about
floating-point numbers). As already noted by several authors [5, 62], the abstract domains from
Abstract Interpretation [26] provide an adequate tool for a generic notion of domains in CP. We
will start from this notion. We also expect that reduced products and other domain-combination
methods will prove useful.

• develop a notion of first-class conflict analysis, allowing theories to exchange rich conflicting
facts (e.g. polynomials for linear rational arithmetic). Two theories that use the same domains

8/ 30

Appel à projets générique 2014 SOPRANO

must also share a common conflict analysis language. This does not prevent a theory from having
a second, more general language (e.g. for both nonlinear and linear arithmetics), as long as it
can convert between both languages or add a “cut” to the proof (roughly, if t is a nonlinear term,
one can pose t = x and use x for the linear version).

• state the properties and requirements for each domain and conflict analysis. Since we
allow theories to communicate with rich domains, as in CP, one theory solver could invalidate the
guarantee properties of another theory solver. Verifying that all the solver properties still hold
whenever a new theory solver is added does not scale. It is a well-known problem in software
analysis, and we will apply the rely/guarantee approach [19]. For each domain and conflict
analysis, we will define which properties it ensures and what it requires. Then we can prove that
the requirements hold when we define a theory solver that uses them. So each theory solver is
proved separately and the addition of a new theory solver only requires a local check.

• center the combination scheme around synthesis in order to simplify both witness con-
struction and solver combination (agree on an explicit solution rather than on an implicit one),
in the vein of model-based theory combination [31], where the Nelson-Oppen combination is
guided by the (dis-)equalities holding on the internal models built by the theory solvers. We
want to go a step further by relying on an incrementally-built model shared by solvers in order
to ensure model agreement across theories.

Dedicated solvers. We will instantiate the previous framework for theories of interest, such as
combining floats with rational numbers, and developing domain-aware decision procedures for arrays,
bitvectors or modular arithmetic. We provide a few representative examples of the analyses we plan
to explore:

• Linear arithmetic: the natural domains for rational and natural numbers are the domains of
intervals and congruences. The constraints learnt by conflict are polynomials [49] and they are
computed from the original polynomials the same way learnt clauses are computed from the
original clauses. These techniques are well-known, hence the Linear arithmetic case will help us
for preliminary design of the combination framework.

• Sets and arrays: considering a set S = {x, y, z} and an element t ∈ S, then the domain of t,
denoted by D(t), can be refined by intersecting it with D(x)∪D(y)∪D(z), similarly to [4]. This
domain-based reasoning is orthogonal to the standard (expensive) case-split analysis on sets and
arrays, and it captures disjunctive information that cannot always be recovered from conflict
analysis.

• Bitvectors: bitvectors are standardly solved using bit-blasting [11], by associating a boolean
variable to each bit of a bitvector variable and a boolean circuit to each bitvector operation.
Once equipped with proper preprocessing, this straightforward approach works better that one
could have expected. Yet, some realistic examples yield intractable boolean formulas. Bardin et
al. proposes a promising CP-based approach for bitvectors [5] through an encoding into integers,
together with dedicated domains and propagators. The present framework will allow us to
explore extensions of this work, especially the design of dedicated learning mechanisms.

• Communication between integers, bitvectors, and floats: these three data types can be seen as
different interpretations of the same objects, hence they can naturally be equipped with the same
domains (e.g. intervals, congruence, trivalued bitvectors), allowing tight collaborations between
their dedicated solvers through reduced products [5].

Platform implementation. The prover will be extensible using dynamic plugins in order to make
it possible for the users to define theories that correspond best to their problems. Moreover, even the
most basic theories will be designed so that they can be replaced for easy future prototyping. Since
we want the communication between theories to be unhindered, we cannot restrict the interface given

9/ 30

Appel à projets générique 2014 SOPRANO

to the theories. So the theories will separate themselves using well-defined module APIs on which
rely/guarantee reasoning can be applied.

Second, we also aim at implementing all the features or APIs needed for an easy integration in
our partners tools. This ranges from specific command-line options, timeout, step number limit (for
better repeatability), specific output, specific APIs. All these specific developments in the solvers will
be open-source and kept general enough for reusability.

Third, since many tradeoffs must be made during the implementation of a prover, we will use
benchmarks coming from industrial problems to guide us.

Finally, since all the needed theories for program verification will not be available until the end of
the project, we will rely on early prototyping to test our intuitions and early ideas. This prototype
will be implemented upon the Alt-Ergo prover which is already used industrially and maintained
by OcamlPro. These developments will not contain the combination framework because it is too
invasive. The first point that will be experimented is incomplete domain propagation for floating-
point numbers and evaluation of its impact on industrial programs. The second one is model output;
it will be restricted to a few theories but it will allow to evaluate the communication between the
provers and the program verification tools used by the partners (SPARK, Why3, Frama-C).

1.4 Challenges, Risks and Fallback

SOPRANO is clearly a highly challenging project. We identify four major challenges, each of them
requiring significant progress with respect to the current state of the art:

Chal1: identify a sweet spot of theory combination, going beyond NO and its derivatives, with richer
communication between theories and finer cooperation;

Chal2: design effective and generic learning mechanisms suitable for both SMT-like and CP-like
decision procedures, and identify the right compromise between propagation and learning;

Chal3: address several industry-relevant and hard-to-solve theories, including floating-point arith-
metic, nonlinear arithmetic, and bitvectors;

Chal4: understand how quantifiers can be handled in our synthesis-based cooperation framework.

Yet, we believe that we will be able to overcome most of these difficulties for the following reasons.
First, we strongly believe that the original approach sketched in Section 1.3 has the potential to sig-

nificantly improve the current combination schemes (Chal1) and provide the right tools for designing
more efficient domain-aware solvers (Chal3) and more generic learning mechanisms (Chal2).

Second, we rely on a strong consortium with international experts in the design and implementation
of verification-oriented solvers, we stand upon strong prior results, and we deliberately focus on solving
verification-oriented formulas for which the consortium has the strongest expertise. Relevant anterior
results from partners include SMT solving [21, 13] (UPSud), integration of abstract interpretation
into verification-oriented CP-solvers [52, 33] (CEA, Inria), decision procedures for floating-point arith-
metic [23, 53, 1, 16, 30, 15] (CEA, Inria, UPSud), an original CP approach for bitvectors [5] (CEA),
a new decision procedure for nonlinear arithmetic [22, 30] and combination of rational arithmetic and
floats [23] (UPSud), an original combination of SMT and CP for arrays [4] in the FDCC prototype
(Inria & CEA) (Chal1, Chal2, Chal4).

Third, we follow an industry-driven approach, including tight collaboration with industrial partners
and feedback from experiments, in order to keep the project focused on the most industry-relevant
problems. This helps mitigating the risk of wasting time with hard-to-solve theories by restricting
ourselves to realistic instances, which may be easier to handle (Chal3). Especially, since program
verification is an unsatisfiable problem, we can take a pragmatic approach and in some cases sacrifice
completeness for the sake of fast termination (Chal2, Chal3, Chal4).

1.5 Results

The project has the potential to deliver significant breakthroughs in automated solving and program
analysis. The major outcome will be a paradigm shift in the combination of automated solvers, going

10/ 30

Appel à projets générique 2014 SOPRANO

beyond current standard cooperation frameworks in terms of extensibility, model-synthesis abilities,
and richness of communication between theories. The resulting solvers will be more widely applicable,
easier to tune for specific applications, and potentially more efficient, by encompassing the best trade-
offs from SMT and CP. This will result in a wider use of verification and program analysis tools,
yielding in turn safer, more secure, and more efficient programs and digital infrastructures. The
proposed approach is very different from state-of-the-art, but we believe that it is the best way to
overcome the limitations pointed out in the introduction and to prepare the future.

1.6 State of the Art

The field of automatic reasoning evolved in many different directions, from the development of very
powerful higher-order logics aiming at the mechanization of mathematics, to the design of efficient
decision procedures tailored to propositional logic (SAT DPLL [29]). Between these two extremes,
SMT and CP are interested in efficient decision procedures for particular first-order theories with
more or less restricted forms of quantification.

DPLL and SAT. A SAT solver has two possible outcomes: either a solution is found, or a proof of
unsatisfiability is constructed. While the satisfiability of boolean formulas (SAT) is theoretically hard,
modern SAT solvers are able to tackle huge practical problems efficiently. These achievements are in
part due to the way the search is done, namely conflict-driven clause learning (CDCL) [64], which
combines decision and learning tightly.

Satisfiability Modulo Theory. The extension of the SAT problem to specific theories is called
Satisfiability Modulo Theories (SMT). SMT solvers commonly use the DPLL(T) approach [60, 38]:
a SAT solver works on the propositional part of the formula, and decision procedures are used to
validate the solution found from the perspective of specific theories. Multiple theories can be dealt
with through combination frameworks such as Nelson-Oppen [59] or Shostak [21]. Nelson-Oppen
makes it possible to combine two solvers for disjoint theories T1 and T2 into a solver for the combined
theory T1] T2. The key point is that solvers must agree on (dis-)equalities between shared variables.
NO can be smoothly integrated into DPLL(T) by adding to the initial formula all (dis-)equalities
between proxy-variables and letting the SAT engine reasons about them.

Several refinements have been proposed along the years. Split-On-Demand [6] allows theory solvers
to request splitting on new clauses (eg. x <= 4 ∨ x > 4) sent to the SAT solver. Yet, splitting still
occurs at the boolean level. Model-based combination [31] takes advantage of the internal (partial)
models choosen by each theory solver for guiding the agreement on (dis-)equalities in Nelson-Oppen.
The domains are still kept private, and the communication is done through (dis-)equalities.

Modern SMT solvers integrates a wide range of very efficient and specialized engines. Program
analysis, however, often requires relatively basic reasoning on many different theories. Thus, the
difficulty does not lie in the reasoning itself, but in the communication between theories. Yet, in the
current SMT framework, these communications are restricted to the boolean level. As a consequence,
many encodings are necessary, and some relevant information may be lost during the process.

S. Conchon and E. Contejean (UPSud) developed Alt-Ergo, an SMT solver based on CC(X) [21].
Contrary to usual SMT solvers, the CC(X) framework centralizes all the equalities in one place. Alt-
Ergo also supports AC(X), an extension of CC(X) designed by M. Iguernelala; this extension natively
supports associative and commutative operators. Finally, Alt-Ergo integrates a powerful new decision
procedure for linear arithmetic [13], where decisions are performed on integer variables (still, inside the
theory solver). Alt-Ergo is used as a backend for several verification tools, including the SPARK tech-
nology2 (AdaCore) and the Frama-C verification platform [27] (CEA, UPsud), whose Qed module [24]
can considerably simplify the formulas sent to Alt-Ergo.

Constraint Propagation. Much attention has been devoted in the CP community to the usage
of domains as a way to facilitate communication between theories. By reducing program verification
problems to showing that a constraint system over finite domains is satisfiable or unsatisfiable, the
question of building efficient and effective solvers emerged 15 years ago, in particular through the early

2http://www.spark-2014.org/

11/ 30

http://www.spark-2014.org/

Appel à projets générique 2014 SOPRANO

and pioneering work of Marre [51] and Gotlieb et al [42]. More recently, by fostering the design of
industry-strength constraint solvers, some works demonstrated the potential of CP to address heavy
program verification tasks [20, 41].

From the seminal work of Howe and King from the University of Kent [46] and Leconte and Berstel
from ILOG [50] emerged the idea of exploiting abstractions to enhance current constraint propagation
in CP solvers dedicated to program verification. This effort led to many improvements for hard-to-
solve theories such as floating-point arithmetic [1, 8, 9, 16, 17, 53, 55], linear and nonlinear constraints
on bounded or natural integers [34, 40, 43],

The integration of these results in CP-solves highly increases their capabilities and efficiency,
but because of the strong collaborations needed between theories, it leads to complex tools hard
to maintain and extend. Another issue comes from the difficulty of turning constraint-based search
procedures into learning-by-failure procedures. Indeed, although clause-learning is very popular in
SAT and SMT solving, CP-based search procedures still do not learn from unsatisfiable cores which
are massively produced during the search.

CEA and Inria have carried out pioneering work in both verification-oriented CP solvers (ACI V3F,
2003–2006) and the combination of Abstract Interpretation and CP (ANR CAVERN, 2008–2011).
They developed respectively the GATeL tool for automatic testing of SCADE models [51, 52] and the
INKA/Euclid tools for automatic testing of C programs [40, 41, 42]. Recent works include CP-based
methods for floating-point arithmetic [16, 17, 53, 1], non-linear arithmetic [34], bitvectors [5], modular
integers [43] and preliminary results on combination of SMT and CP for arrays [4]. Finally, CEA
and Inria initiate the creation of the CSTVA workshop (Constraints in Software Testing, Verification
and Analysis) which brings together people of distinct communities to discuss fruitful ideas around the
use of constraints in program verification tasks.

Beyond the Current Practice. SMT solvers keep growing with the addition of new decision
procedures. Some have proposed to adapt the CDCL approach to theories beyond propositional
logic [25]. De Moura and Jovanović [48] revisited a complete but impractical technique for solving
nonlinear problems called CAD; they turned it into a usable decision procedure using the CDCL
approach for focusing the search and reducing the amount of computations. New decision procedures
on floating-point numbers also used this approach [44]. In the meantime, a proposal extended the
use of CDCL to the whole SMT framework and called it Model-Constructing Satisfiability (MCSat)
calculus [32, 47]. This approach, however, keeps a strong link with propositional logic: it is still
based on CNF formulas and keeps the domains inside the theories. For its part, the CP community
extended the use of global constraints which can be considered as theories [10]. But these works have
no mechanism of learning, or are restricted in a way similar to DPLL(T) [61]. We propose to overcome
the shortcomings of the MCSat framework with ideas of the CP community: making the domain a
first-class citizen and letting theories communicate in a natural way.

We cal also notice a growing trend toward the convergence of separated subfields of verification
and automated reasoning. Abstract Interpretation revisited SAT/SMT [37] and CP [62, 5]. Yet, these
works do not properly take into account learning. In the meantime, Bardin and Gotlieb combined
propagation (CP) and reasoning (theory of array used in SMT) [4]. The SOPRANO project provides
a natural opportunity to push further such connections and take advantage of them.

1.7 Position of the Project

1.7.1 Adequacy to ANR Call For Project 2014

This project falls into Challenge 7 of the ANR CfP 2014, entitled “Information and Communication
Society”. It is especially relevant to Axis 7.2.2 “Software Science and Technology” (p. 52 of CfP)
focusing on technologies and tools for building better software, since the new generation of automatic
solvers we want to design is primarily geared toward program analysis. They will be first used in
“automatic verification tools” for safety or security (such as provers or advanced testers), but such
solvers can also be of interest in “optimized compilation” or in advanced type systems for high-level
“programming languages”. Simply put, Axis 7.2.2 aims at improving tools and frameworks for building
high-quality software systems, and automatic solvers is a current, powerful, and pervasive trend for

12/ 30

Appel à projets générique 2014 SOPRANO

building them. In the same line, the project is also relevant to Axis 7.2.3 “Digital Security” (p. 52
of CfP) since better automatic solvers yield better automatic verification tools for security-related
properties, such as automatically finding vulnerabilities or checking the absence of information leakage
in a piece of software (“verification and resilience of software-intensive systems”). Finally, on a broader
scope, the project will also address basic issues falling into Axis 7.2.1 “Foundations of Digital Systems”
(p. 51 of CfP), such as exploring new combination frameworks for automatic solvers and designing
learning algorithms for CP.

SOPRANO is a cooperative project gathering partners from both academia and industry. The
project addresses fundamental issues, but in the same time is firmly based on industry-relevant prob-
lems. Indeed, program analysis and verification have proved to be domains where cutting-edge com-
mercial products often rely on fundamental results in logic and theoretical computer science (see
hardware model checking at Intel or IBM and software model checking at Microsoft).

1.7.2 Position w.r.t. anterior research projects from members of the consortium

SOPRANO stands upon a strong record of fruitful collaborative works between the project’s partners.
We summarize them hereafter, and we give a more precise description of the Hi-Lite project (2010–
2013). SOPRANO build on these former results in order to prepare the next generation of verification-
oriented solvers.

SMT-based verification: The development of the Alt-Ergo SMT solver was initiated in the ANR
A3PAT project (2005–2009) (UPSud), in order to help proof assistants with trustworthy decision
procedures. The tool was later consolidated in ADT Alt-Ergo (2009–2011) (UPSud), towards
its industrial use in avionics by Airbus. In the same time, RNTL CAT (2006–2009) (CEA,
UPSud, Inria) and ANR U3CAT (2009–2012) (CEA, UPSud, Inria) explored the usage of Alt-
Ergo as a backend solver for the Frama-C verification platform, through the Why3 language,
while ANR Decert (2009–2012) (UPSud, CEA, Inria) aimed at designing and implementing
new efficient cooperating decision procedures (in particular for fragments of arithmetics), to
standardize output interfaces based on proof certificates and to integrate SMT provers with
skeptical proof assistants and larger verification contexts.

CP-based verification: (CEA, Inria) The ACI V3F project (2003–2006) [12] initiated the study of
constraint-based testing and verification techniques for embedded C and C++ programs, leading
to the development of specialized constraint solvers. The ANR CAVERN project (2008–2011)
(Constraints and Abstractions for program VERificatioN) proposed to explore and extend the
capabilities of Constraint Programming for the automated testing of imperative programs using
notions from Abstract Interpretation.

FUI Hi-Lite (2010–2013): (UPSud, Adacore, CEA) Hi-Lite’s goal was to promote the use of for-
mal methods in developing high-integrity software. It has resulted in a complete redesign of the
SPARK language and a reimplementation of the associated verification tools. The difference is
impressive: the new SPARK 2014 language is both richer and more flexible; the formal veri-
fication tools are easier to use and much more automated; the associated methodology allows
applying SPARK incrementally to legacy projects. The resulting toolset has been released com-
mercially3 for the first time in April 2014, one year after the end of the project. The increased
usage of specification, however, leads to new proof challenges as described in the objectives of
SOPRANO.

We describe hereafter three current projects involving partners of the consortium. They are com-
plementary of SOPRANO in the sense that they all seek to extend the use of automatic provers, but
they mostly take solvers as blackbox and do not try to improve them.

3http://www.spark-2014.org/about

13/ 30

http://www.spark-2014.org/about

Appel à projets générique 2014 SOPRANO

Joint Laboratory ProofInUse (2014–2017). (UPSud, Adacore) This Joint Laboratory4 shares
the resources and knowledge between Vals/Toccata (UPSud) and AdaCore and aims at signif-
icantly increasing the number of industrial customers of the SPARK technology. To do so, it
focuses on improving automation in program verification, but at a higher level than SOPRANO
does (at the level of Why3, which produces the formulas sent to automatic provers).

ANR BWare (2013–2016). (UPSud, OCamlPro) This is an industrial research project funded by
the INS program of ANR. This project aims to provide a mechanized framework to support the
automated verification of proof obligations coming from the development of industrial applica-
tions using the B method and requiring high guarantees of confidence. One of its goal is to
integrate the SMT solver Alt-Ergo as a back-end of Atelier B.

ANR Cafein (2013–2016). (CEA, UPSud) This is an industrial research project funded by the INS
program of ANR. It addresses the formal verification of functional properties at specification
level, for safety critical reactive systems. One of the goals of the project is to improve the level
of automation of formal verification, by adapting and combining existing verification techniques
such as SMT-based induction and abstract interpretation for invariant discovery.

1.7.3 Position w.r.t. national and international research teams

National level. Our consortium is centered around teams from “Plateau de Saclay” (CEA, UPSud,
OcamlPro, AdaCore) specialized in formal methods, software verification, and automated reasoning.
These teams have already a strong record of close and fruitful collaborations (through seminars,
collaborative research projects, research networks such as Systematic or Digiteo, recruitment of former
PhD students, etc.), leading to international-level achievements and even a few industrial success
stories: the development of Frama-C (CEA, UPSud) and its industrialization at Airbus, the creation
of OCamlPro, the industrialization of Alt-Ergo (UPSud, OcamlPro, AdaCore). SOPRANO will allow
to support and consolidate this ecosystem.

The research on SMT solvers in France is very active at LORIA, Nancy. The VeriDis team develops
the veriT solver, which is a concurrent of Alt-Ergo. The VeriDis and the CASSIS teams explore
extensions of the Nelson-Oppen combination framework, with ideas different from the ones exposed in
Section 1.3. We will make sure to communicate with these teams during the project. SOPRANO also
regroups most of (the few teams) involves in CP-based verification, and we are used to collaborating
tightly with the major remaining team led by Michel Rueher at University of Nice.

From an industrial point of view, industrial users of the verification tools developed by the con-
sortium (including major French companies, such as Airbus, Dassault, Athos, Esterel, and EDF) will
benefit from the enhanced capabilities of the new solver developed in SOPRANO.

International level. The two major SMT solvers are probably Z3 - developed at Microsoft R&D
(RISE team), and CVC4 - developed at New-York University (NYU) and University of Iowa (UIowa).
(Note that the Microsoft RISE team also develops verification tools in addition to Z3.) The Z3 and
CVC4 teams are continuously trying to push their approaches beyond the state of the art. We can
cite for example: extension of SMT solvers to least-fixpoint of Horn clauses [2] (Microsoft), or the
model construction calculus approach [32, 47] (SRI, NYU, Microsoft). In Europe (Spain), Robert
Nieuwenhuis and his team developed the SAT-solver Barcelogic which was recognized as one of the
most powerful SAT-solver at the time. Extended with theories such as uninterpreted functions and
difference logic ten years ago, Barcelogic has recently been commercialized and released as another
SMT-solver.

The Australian team G12 led by Peter Stuckey and Kim Marriot has released the Zinc CP-
solver [58] which is a general-purpose constraint optimization language. By implementing dedicated
filtering procedures for modular integers and nonlinear polynomial constraints, Zinc is a an interest-
ing environment for solving optimization problems. At Uppsala University in Sweden, Joseph Scott,
Pierre Flener, and Justin Pearson have proposed a dedicated solver for solving problems with string

4http://www.spark-2014.org/proofinuse

14/ 30

http://www.spark-2014.org/proofinuse

Appel à projets générique 2014 SOPRANO

manipulation [63]. This solver, built on top of Gecode, implements dedicated filtering procedures
based on abstract domain computations over strings.

We already have contacts with most of these teams, and we will make sure to communicate with
them along the project.

It must be noticed as well that several recent works establish connections between separate sub-
fields of automated reasoning and/or verification. We can cite for example CP and Abstract Interpre-
tation [62, 5] or SMT and Abstract Interpretation [37, 56]. The SOPRANO project provides a natural
opportunity to study such connections and take advantage of them.

2 Scientific and Technical Program

2.1 General Description

Adacore

WP1.1

hmarkBenc•
wledgeknoDomain•

tsRequiremen

Adacore

WP1.2

hallengescfutureDefine•
olstoaluateEv•

alidationVInria

WP2

etc•
conflictFirst-class•
domainFirst-class•

orkframewbinationCom

UPSud

WP3

etc•
ectorBitv•

toinFloating-p•
theoriesDedicated

CEA

WP4

Alt-ErgoinAFP•
theoriesDedicated•

plateformSOPRANO•
tationImplemen

WP5
Dissemination

OcamlPro

WP6
tManagemen CEA

: task leader

Figure 2: Workpackage workflow

The project is divided into four technical tasks (WP1 to WP4), plus a dissemination task (WP5),
and a management task (WP6). The core technical tasks are WP2 (Combination), WP3 (Dedicated
solvers), and WP4 (Implementation), respectively dedicated to objectives Obj1, Obj2, and Obj3.
Requirement analysis and industrial validation will be performed in WP1 (resp. WP1.1 and WP1.2),
addressing Obj4, while WP5 addresses the Obj-visibility objective. Finally, all the WPs participate
in achieving Obj-progress. The major scientific and technical output of the project is the new solver
combination scheme (WP2) and its implementation (WP4). The logical workflow among tasks is
depicted in Figure 2, while Figure 3 shows the involvement of each partner in each task. A brief
description of each task, with its leader, is given hereafter.

WP1: Requirements and validation [AdaCore]. The goal of WP1.1 is to identify industrial
needs in terms of verification-oriented automatic solvers. They will be expressed mainly through
a representative set of benchmarks and comparison of existing tools. Validation of the prototypes
developed during the project tools will be conducted in WP1.2 at the end of the project. Adacore and
OcamlPro have a prominent role here. We will also involve external partners, such as Dassault.

15/ 30

Appel à projets générique 2014 SOPRANO

WP1 will first provide useful inputs to core technical tasks, especially the limitation of existing
approaches and the identification of the crucial parts of the theories. During the project, WP1 will
provide continuous guidance in order to keep focusing on industry-relevant problems. Finally, at the
end of the project, WP1 will help to assess the viability and maturity of the proposed solutions.

WP2: Combination [INRIA]. WP2 aims at developing the new collaboration framework. We will
start by reviewing state-of-the-art combination techniques, especially those of the tools compared in
WP1. We will then design a framework following guidelines of Section 1.3 in order to overcome (part
of) the limitations identified during WP1.

WP2 will provide to WP3 the framework in which the theories will be designed and to WP4 the
formalization of the engine to be implemented.

WP3: Dedicated Theories [UPSud]. This task deals with the development of theories that have
been identified in WP1 as useful for program verification. One already identified theory is floating-
point arithmetic. For this theory, WP1 will help identify which kind of reasoning is needed. Other
possible theories include linear and nonlinear arithmetic, as well as bitvectors.

WP3 will provide to WP4 the formalization of the dedicated theories to implement.

WP4: Implementation [CEA]. This task aims at creating a tool that fits the requirements ex-
pressed in WP1, using the framework and theories designed in WP2 and WP3. To provide early
feedback on the choices made during the design of the dedicated theories, some of them will be im-
plemented in the Alt-Ergo solver already used industrially. However Alt-Ergo suffers from the same
limitation as the other solvers; in order to implement all the dedicated theories and the extensible
framework, a new solver will be implemented during the project. It will be tested with the benchmark
gathered during WP1.

WP4 will implement the results from WP2 and WP3, and it will provide the prototypes for valida-
tion during WP1.2.

WP5: Dissemination [OcamlPro]. WP5 deals with dissemination activities (open-access bench-
marks, tutorials, workshops, etc.) in order to ensure maximal visibility to the project’s results.

WP6: Management [CEA]. WP6 deals with the management and the coordination of the project
as well as issues related to the consortium agreement.

2.2 Project Management

CEA is in charge of the general management of the project as well as reporting to ANR. Task leaders
are in charge of the management of their tasks and report to the project leader. General meetings
involving all participants will take place twice a year. We plan periodical steering meetings (email,
phone, visio). Technical meetings focused on particular issues will be organized on-demand during the
project. We also plan a 2- or 3-day midterm seminar in order to evaluate the progress and anticipate
difficulties. Regarding day-to-day work, we will set up a collaborative working environment (website,
git, and mailing list), and we plan a few visits of 2-4 days between partners.

16/ 30

Appel à projets générique 2014 SOPRANO

2.3 Description by task

WP 1. Requirements and validation

responsable Adacore
participants All
start T0+0 end T0+42

goal

This task is divided into two parts: a requirement analysis at the beginning of the
project (WP1.1), and a validation step at the end of the project (WP1.2).

WP1.1: Requirement analysis. As a first action, the industrial partner will
summarize in a report the shortcomings of the existing provers, which will be ad-
dressed in this project. This report will help direct the work on the proof tools.
AdaCore will then prepare a set of benchmarks taken from SPARK programs which
are representative of the problems to be solved in the project. Some work will be
needed to adapt the existing benchmarks to a format that is suitable for Alt-Ergo
and the new prover. For example, SPARK currently uses real numbers to express
properties of floating-point numbers, but a benchmark for floating-point support in
provers should use floating-point operations directly. Finally, the benchmark will be
integrated into the testing frameworks at OCamlPro and CEA.

W1.2: Validation. The benchmark will be used continuously by OCamlPro, Inria,
and CEA to measure their progress. AdaCore will also regularly assess the tools.
This will happen in a more formal way twice over the duration of the collaboration,
once at T0 + 24 months as a mid-term evaluation, and once at T0 + 42 months to
establish the final report.

method

Diversity in the benchmarks. Every set of benchmarks will contain simplified
problems and real-life examples. While the latter ones may be highly challenging,
the simplified experiments (“in-vitro”) should be easier to reach, and should already
provide us with interesting feedback and lessons.

deliverables

D1.1 T0+3 requirement analysis Adacore

D1.2 T0+9 set of benchmarks Adacore

D1.3 T0+12 benchmark environment OcamlPro

D1.4• T0+24 midterm experimental evaluation Adacore

D1.5• T0+42 final experimental evaluation Adacore

17/ 30

Appel à projets générique 2014 SOPRANO

WP 2. Combination
responsable Inria
participants CEA, UPSud, and Inria

start T0+3 end T0+36

goal

The goal is to design a new collaboration framework for solvers, centered around
synthesis rather than satisfiability and allowing cooperation beyond that of Nelson-
Oppen (richer communications, non-disjoint theories) while still providing minimal
interfaces with theoretical guarantees.
The Nelson-Oppen framework and derivatives achieve soundness by ensuring the
theories agree on the equalities and disequalities between shared formulas. With
hypotheses on the theories like disjointness, politeness, this agreement ensures the
existence of a model (but does not build it explicitly). In the first deliverable, we will
survey the existing combination techniques (UPSud and Inria). In order to remove
the hypotheses of current combination frameworks, we will build concretely the
models, and the theories will directly agree on the models. For that, the domains
need to be a field specific concrete value. Moreover, since this agreement is an
iterative process, an event engine must be devised. The second work deliverable aims
at describing such combination, and how the theories will manipulate the domain
and guide the search. Inria and CEA will bring their expertise in CP solvers for the
domain interface and the event engine; UPSud will bring its combination framework
expertise.
Since it will not be practical to try one model at a time, we will need to generalize the
impossibility of some models by reasoning. Since the domains allow the theories to
communicate, reasoning must also be an inter-theory process. The third deliverable
aims at describing a parametric reasoning framework (CEA, UPSud, Inria).
During this work package, common theories such as booleans, uninterpreted func-
tion, linear arithmetic, or algebraic datatypes will be designed as instances of the
framework. That will show whether the framework is general enough and give the
plan for their implementation in WP4.4.
Finally the last deliverable aims at consolidating this framework, and taking into
account the experience of WP3 and WP4 (CEA, UPSud, Inria, OCamlPro).
OCamlPro will bring a practical point-of-view during all this work package and also
test early ideas on domains for floating-point arithmetic in the Alt-Ergo prover.

method

Event-driven engine. We will integrate in the combination framework an event-
driven engine as can be found in CP solvers. This makes it possible to give a general
definition of propagation between theories but also possibly inside theories.
Learning framework. We will design a framework that makes it possible for
different theories to communicate during the conflict-analysis phase.
No special case. We will design the collaboration framework without using spe-
cial cases for common theories. In previous framework, some theories, such as
boolean connectives or uninterpreted functions, are treated specially in order to
be integrated. Other theories do not benefit from this special treatment, and their
expressive power is limited as a consequence.
Join operations. We will design ways for a generic theory, like arrays or if-then-
else, to propagate domains of other theories through theirs own symbols using join
operations like in abstract interpretation. For example, the domain of ite(c, x, y) is
included in the union of the domain of x and the domain of y

deliverables

D2.1 T0+12 survey of combination techniques UPSud

D2.2• T0+18 combination framework I (first-class domain) Inria

D2.3 T0+24 combination framework II (first-class conflict) CEA

D2.4 T0+36 consolidation UPSud

18/ 30

Appel à projets générique 2014 SOPRANO

WP 3. Dedicated theories
responsable UPSud
participants CEA, UPSud, OcamlPro, Inria

start T0+3 end T0+36

goal

The goal is to design new decision procedures for industry-relevant and hard-to-solve
theories such as floating-point arithmetic, nonlinear arithmetic, and arrays. The
floating-point theory is the most critically theory missing in Alt-Ergo. However,
some preliminary intuitions of the industrial needs, which will be checked by WP1,
show that a complete decision procedure for floating-point operations is less needed
than an incomplete but fast domain propagation. In order to verify that statement
and speed up the time-to-market of this feature, it will be firstly designed for the Alt-
Ergo combination framework AC(X) and implemented during WP4.1. Then when
WP2.2 starts describing the new combination framework, a floating-point solver
that can be integrated to this framework will be designed. Some other interesting
theories will be designed during the other phases and be implemented during WP4.4
and WP4.3.
One major goal of the work package is to enforce as much as possible communication
between these theories, like using the key and data domains in the array theories [4],
or creating a fast reduce-product of all the domains related to natural numbers
(interval, modulus, bitvector [5], floating-point).
Another major goal is to reduce the number of theory axiomatization in industrial
problems sent to the prover. Axiomatization using first-order quantification is very
useful for describing a theory that the solver does not know using built-in theory.
However it is never satisfactory since the quantifier engine is very general, and it
requires a great knowledge of how the axioms are instantiated. One of the part-
ners worked on formalizing how solvers instantiate and how to prove soundness and
completeness of axiomated theories [36]. We will evaluate during the third part
of this work package, whether coding an actual theory in the framework is harder
than writing an axiomatization in this formalization, whether domains make such a
theory more efficient or simpler to code, and whether libraries can be designed for
simplifying this coding.

method

Domain for floating-point numbers. We will reuse the experience of the pro-
totype of the integration of floating-point arithmetic from [23] in AC(X). However
we will focus more strongly on precise floating-point domain propagation like in [53].
Bitvector. Bitvectors will not use direct bit-blasting as usually done; they trans-
form bitvector constraints into boolean constraints, leading to a huge increase in the
formula size. We will use instead a lazy version that extends [5], which uses a domain
of bitvector and direct propagation of bitvector constraints. The conflict-analysis
phase deduces constraints on bitvectors, which are in the worse case similar to the
clause learnt from bit-blasting, but without making explicit the intermediary huge
SAT formula.
Nonlinear arithmetic. We will first use a pragmatic but incomplete approach
for nonlinearity and if needed more complicated techniques in the spirit of [48].

deliverables

D3.1• T0+12 FPA solver UPSud

D3.2• T0+24 theory solver for our combination mechanisms I Inria

D3.3 T0+36 theory solver for our combination mechanisms II UPSud

19/ 30

Appel à projets générique 2014 SOPRANO

WP 4. Implementation

responsable CEA
participants CEA, OcamlPro, INRIA, UPSud

start T0+6 end T0+40

goal

The project partly aims at improving the automatic reasoning used in the tools
from the industrial partners. A prototype will be delivered during the project but
the more competitive version will appear only at the end of the project. In order
to improve the industrial tools on a shorter term, some already-used techniques will
be implemented into Alt-Ergo as soon as the project starts (OcamlPro, UPSud).
Moreover it will make it possible to test some of the new techniques in-situ.
We aim for the implementation to be as extensible as the framework designed during
WP2 could be. Moreover the tools will accept dynamic plugins for new theories.
One technical problem with the extensibility of such tools is that the parser and
type-checker must also be extended which is not easy to do. Fortunately, the Why3
notions of theory help to solve this problem. The general type system and the ability
to define new prefix, infix, or mixfix operators allow to define the signature of all the
usual theories. So we want the Why3 language to be one of the input languages, and
each plugin will define a Why3 theory for the surface language and link it to term
constructors for the propagation and reasoning part. We also aim to implement
all the features or APIs needed for an easy integration in our partners tools. This
ranges from specific command-line options, timeout, step number limit (for better
repeatability), specific output, specific APIs. All these specific development in the
solvers will be open-source and kept general enough for reusability.

method

Two-way communication with theories. The implementation is linked to the
theoretical part of the project not only because it is the concretization of the for-
mer, but also because the former guides the latter. That is why the time of the
implementation task overlaps with the corresponding fundamental task.
Testsuite. We will continuously use the benchmark given by WP1 as a testsuite
for developing and guiding the heuristics and optimizations.
Polyglot. We will add a variety of input language (SMT-LIB2 [7], Why3 [14],
Alt-Ergo [21]) for simplifying the use of the tools.

deliverables

D4.1 T0+12 extension of Alt-Ergo I (FPA) OcamlPro

D4.2• T0+12 preliminary implementation of the SOPRANO-solver,
roadmap

CEA

D4.3 T0+24 extension of Alt-Ergo II OcamlPro

D4.4 T0+24 implementation of SOPRANO-solver II (incl. D2.2
and D2.3)

CEA

D4.5• T0+36 implementation of SOPRANO-solver III (incl. D3.2
and D3.3)

CEA

D4.6 T0+42 consolidation of prototypes OcamlPro

20/ 30

Appel à projets générique 2014 SOPRANO

WP 5. Dissemination
responsable OcamlPro
participants CEA, UPSud, OcamlPro, and Inria

start T0+6 end T0+42

goal

WP5 focuses on the dissemination of the results obtained during the project. More-
over, in order to encourage other solver developers to focus on problems that matter
for program verification, we will make the benchmarks produced during WP1 readily
available. Last but not least, we will present the theoretical work done during WP2
and WP3 at conferences or in journals.

method

Open source. We will publish the framework and theories implemented during
this project with an open-source license. Tutorials and a mailing-list will be provided
for a community to form.
Benchmarks. We will add our benchmarks to existing benchmark databases, and
make them available from the website of the project.
Publications. We will produce early technical reports that could be later turned
into publications.

deliverables

D5.1 T0+18 publicly-available database of benchmark OcamlPro

D5.2 T0+20 website for SOPRANO-solver CEA

D5.3 T0+42 report about dissemination activities OcamlPro

WP 6. Management

responsable CEA
participants CEA, UPSud, OcamlPro, and Inria

start T0+0 end T0+42

goal

WP6 coordinates the project, deals with consortium agreement issues, sets up a
cooperative framework (git, wiki, mailing list), and reports to ANR. We plan to
have periodical steering meetings (email, phone, visio); general meetings will occur
every 6 months. Technical meetings focused on particular issues will be organized
on-demand during the project. We also plan a 2- or 3-day midterm seminar in order
to review progress and difficulties. This seminar will be an opportunity to invite a
few external experts.

deliverables

D6.1 T0+3 project website, mailing lists, code repositories CEA

D6.2 T0+6 ANR starting report CEA

D6.3 T0+12 consortium agreement CEA

D6.4 T0+18 ANR midterm report CEA

D6.5 T0+21 midterm seminar CEA

D6.6 T0+42 ANR final report CEA

2.4 Planning, summary

The list of deliverables is summarized in Table 2. A Gantt chart of the project is presented in Figure 3.
Staff involvement is described in Table 3 and Table 4.

21/ 30

Appel à projets générique 2014 SOPRANO

ID MS Date Type Description Leader

D1.1 T0+3 R requirement analysis Adacore

D6.1 T0+3 W project website, mailing lists, code repositories CEA

D6.2 T0+6 R ANR starting report CEA

D1.2 T0+9 R set of benchmarks Adacore

D1.3 T0+12 P benchmark environment OcamlPro

D2.1 T0+12 R survey of combination techniques UPSud

D3.1 • T0+12 R FPA solver UPSud

D4.1 T0+12 P extension of Alt-Ergo I(FPA) OcamlPro

D4.2 • T0+12 P preliminary implementation of the SOPRANO-solver, roadmap CEA

D6.3 T0+12 CA consortium agreement CEA

D2.2 • T0+18 R combination framework I (first-class domain) Inria

D5.1 T0+18 W publicly-available database of benchmark OcamlPro

D6.4 T0+18 R ANR midterm report CEA

D5.2 T0+20 W website for SOPRANO-solver CEA

D6.5 T0+21 S midterm seminar CEA

D1.4 • T0+24 R midterm experimental evaluation Adacore

D2.3 T0+24 R combination framework II (first-class conflict) CEA

D3.2 • T0+24 R theory solver for our combination mechanisms I Inria

D4.3 T0+24 P extension of Alt-Ergo II OcamlPro

D4.4 T0+24 P implementation of SOPRANO-solver II (incl. D2.2 and D2.3) CEA

D2.4 T0+36 R consolidation UPSud

D3.3 T0+36 R theory solver for our combination mechanisms II UPSud

D4.5 • T0+36 P implementation of SOPRANO-solver III (incl. D3.2 and D3.3) CEA

D1.5 • T0+42 R final experimental evaluation Adacore

D4.6 T0+42 P consolidation of prototypes OcamlPro

D5.3 T0+42 R report about dissemination activities OcamlPro

D6.6 T0+42 R ANR final report CEA

MS: milestone R: report, P: prototype, W: website, CA: consortium agreement, S: seminar

Table 2: Deliverables sorted by date

Partner WP1 WP2 WP3 WP4 WP5 WP6 Total

CEA 3 12 12 30? 2 4? 63

UPSud 2 12 28? 10 2 1 55

Inria 2 13? 20 18 0 1 54

OcamlPro 3 4 11 28 5? 1 52

Adacore 7? 0 0 0 2 1 10

Total 17 41 71 86 11 8 234

?: WP leader

Table 3: Task Effort in PM

22/ 30

Appel à projets générique 2014 SOPRANO

D1.1 D1.2 D1.3 D1.4 D1.5

D2.1 D2.2 D2.3 D2.4

D3.1 D3.2 D3.3

D4.1-2 D4.3-4 D4.5 D4.6

D5.1 D5.2 D5.3

D6.1 D6.2 D6.3 D6.4 D6.5 D6.6

time 42393633302724211815129630

WP6

WP5

WP4

WP3

WP2

WP1

deliverable: milestone:
Figure 3: Gantt Chart

Partner Name First name Position Implication Responsibility

CEA BOBOT François Research engineer 42 p.m. project leader

leader WP4, 6
WP1, 2, 3, 4, 5

BARDIN Sébastien Research engineer 11 p.m. WP2, 3

BRUNO Marre Research engineer 10 p.m. WP2, 3, 4

UPSud CONCHON Sylvain Professor 7 p.m. WP2, 5

CONTEJEAN Evelyne CR researcher 7 p.m. WP2, 3

MELQUIOND Guillaume CR researcher 11 p.m. WP1, 2, 3, 4

(to hire) Post-doc 18 p.m. WP3, 4

(to hire) Internship 6 p.m. ×2 WP3, 4

OcamlPro LE FESSANT Fabrice Scientific advisor 4 p.m. WP1, 5

IGUERNELALA Mohamed Research engineer 28 p.m. leader WP5

WP1, 3, 4, 5

(to hire) Internship 5 p.m. ×4 WP3,4,5

Inria ACHER Mathieu Assistant professor 7 p.m. leader WP2

WP2, 3

GOTLIEB Arnaud DR researcher 7 p.m. WP1, 2, 3

(to hire) PhD student 36 p.m. WP2, 3, 4

Adacore KANIG Johannes Research engineer 3 p.m. leader WP1

WP1, 5

MOY Yannick Research engineer 3 p.m. WP1, 5

DROSS Claire Research engineer 4 p.m. WP1, 5

Table 4: Staff involvement

23/ 30

Appel à projets générique 2014 SOPRANO

2.5 Consortium

CEA LIST. The LSL laboratory has been conceiving and realizing software verification tools for many
years, and counts several successful industrial transfers: the Caveat proof tool for C programs is used by
Airbus since 1998 (qualified for the DO-178B in 2008), its successor the open source Frama-C platform
(co-developed with UPSud, based on the Alt-Ergo prover) is used at Airbus and NASA, the GATeL
testing tool for SCADE programs is used by Esterel Technologies. François Bobot (coordinator),
Bruno Marre, and Sébastien Bardin will participate in the project, bringing expertise in verification-
oriented CP solving [52], including constraints for floating-point arithmetic [53], bitvectors [5], and
combination of CP and SMT for arrays [4]. François Bobot has also an expertise in SMT since he
worked on Alt-Ergo [13] (while a PhD student) and on the leading SMT solver CVC4.

University of Paris-Sud. The LRI will be involved in this project through the VALS team which
develops methods and tools for program verification. Sylvain Conchon (PR), Évelyne Contejean
(CR CNRS), and Guillaume Melquiond (CR Inria) will participate to SOPRANO. Sylvain Conchon
and Évelyne Contejean are both involved in the design and implementation of the Alt-Ergo SMT
solver [21, 13]. Guillaume Melquiond is involved in the development of Gappa, an automated prover
for floating-point properties [30], and Flocq, a formalization of floating-point arithmetic [15]. The
role of VALS in the project will be to bring its competences on Alt-Ergo and on the design of new
decision procedures dedicated to program verification, e.g. floating-point arithmetic [23] or nonlinear
arithmetic [22].

Inria. The team-project DIVERSE from Inria Rennes will be involved. The team focuses on improving
development methods and tools for highly-configurable systems, including Model-Driven Engineering
techniques, variability modeling and testing, code-based testing and test configuration generation.
Participation of Inria Rennes will be coordinated by Arnaud Gotlieb (CR Inria), who has developed a
strong expertise in the use of CP for verification and testing [33], including floating-point arithmetic
[1, 16] and recent work around cooperation between SMT and CP for arrays [4].

AdaCore is the leading provider of commercial software solutions for the Ada programming language.
AdaCore’s customers build large, long-lived applications where safety, security, and reliability are
critical. SPARK is a subset of Ada which is amenable to formal verification. It has been used in the
industry for the last 25 years to formally verify software in industrial applications in avionics, railway,
and the security industry. The newest version SPARK 2014, being based on the Why3 framework for
program verification, makes full use of the power of SMT solvers; it uses the SMT solver Alt-Ergo at
its heart. SPARK is developed jointly by AdaCore and Altran UK. AdaCore will adapt the SPARK
tools to be able to benefit from the solver developed in this project, provide benchmarks and feedback.

OCamlPro is a young Inria start-up devoted to the improvement of software code quality. OCamlPro
has two main activities. First, the company promotes the use of functional programming languages
with strong static type-systems, currently mainly the OCaml language. Second, the company de-
velops verification tools to improve the quality of programs developed with standard (weakly typed)
programming languages. Among these tools, OCamlPro improves and distributes the Alt-Ergo au-
tomatic theorem prover from University of Paris-Sud, which is used inside verification tools in the
avionic industry to prove the correctness of critical code.

Quality of the consortium. The consortium shows three major strengths, which should allow to
meet the project’s ambitious goals.

• Quality, diversity, and complementarity of partners. All researchers and engineers involved in
SOPRANO are high-quality experts working at international quality standards and used to
collaborative projects. The consortium gathers experts whose competences span over all main
aspects of the project: SMT, CP, development of solvers for verification purposes and industrial
experiments. Moreover, partners range from academia to industry, including a company selling
solvers (OCamlPro) and a company using solvers (AdaCore).

• Strong prior results. SOPRANO can stand upon strong prior results from the partners. To name
a few: strong expertise in SMT solving (UPSud [21, 13]), strong expertise in CP for verification

24/ 30

Appel à projets générique 2014 SOPRANO

purpose (CEA [52], Inria [33]), innovative works on floating-point arithmetic constraints (UP-
Sud [30, 23], CEA [53], Inria [1, 16]) and bitvectors (CEA [5]), first ideas on combining CP and
SMT for the theory of arrays (CEA & Inria [4]).

• Strong prior collaborations. Finally, the different partners are used to collaborating together
with a strong record of fruitful collaborations, including the design and implementation of the
open-source verification platform Frama-C (CEA, UPSud) and the industrialization of Alt-Ergo
(UPSud, OCamlPro). In order to ensure strong collaboration within the project, we will ask for
co-supervised PhD and Post-Doc grants between the academic partners.

2.6 Scientific Justification of Requested Resources

Why a 42 months project? We request a 42-month project for the following reasons. First, a
project longer than 36 months is much more convenient to recruit good PhD students, as we can
spend the first months searching for candidates. Second, SOPRANO contains a significant amount of
prototype implementation and empiric evaluation. These activities require lots of time, and experi-
ments often require a consolidation step after the first try. Note that we have planned regularly-spaced
deliverables and milestones in order to ensure project progress.

permanent (p.m.) non-permanent (p.m.) total cost (ke) funding request (ke)

CEA 63 0 670 335

UPSud 25 (1 PD, 2 IS) 30 493 132

Inria 18 (PhD) 36 397 143

OcamlPro 32 20 440 198

Adacore 10 0 134 60

Total 148 86 2134 868
PD: Post-doc IS: Internship PhD: PhD student

Table 5: Total effort

CEA LIST

• Permanent staff. People involved in the project are François Bobot (100%), Sébastien Bardin
(26%) and Bruno Marre (24%). This is a total of 63 person.months, for a cost of 386ke

• Missions. We ask for 17.5ke: project meeting and technical visits (7ke), international confer-
ences and workshop (10.5ke)

• Other. We ask for 3ke of furniture, including laptops and scientific books.

• Structure cost. 264ke

University of Paris-Sud

• Permanent staff. People involved in the project are : Evelyne Contejean, Guillaume Melquiond
and Sylvain Conchon. This is a total of 25 person.months.

• Non-permanent staff. A Post-doc will be involved in the project for 18 person.months. There
will also be two internships involved for 12 person.months.

• Missions. We will need 20ke for project meetings, technical visits and international conferences.

• Other. We ask for 6ke for furniture, including laptops.

• Structure cost. 5ke.

25/ 30

Appel à projets générique 2014 SOPRANO

Inria

• Permanent staff. People involved in the project are Arnaud Gotlieb and Mathieu Acher. This
is a total of 18 person.months.

• Non-permanent staff. A PhD student will be involved in the project for 36 person.months
(i.e., for 3 years as typical in PhD thesis) and for 120ke.

• Missions. We will need 15ke for project meetings, technical visits and international conferences.
The PhD student involved in the project is likely to present papers and disseminate ideas at
international venues.

• Other. We ask for 2,5ke for furniture, including laptops and scientific books.

• Structure cost. 5ke

Adacore

• Permanent staff. The engineers Johannes Kanig, Claire Dross, and Yannick Moy are involved
in the project, for a total of 10 person.months, and for a cost of 80ke.

• Missions. We will need 12ke for project meetings, technical visits and international conferences.

• Other. We ask for 2ke of other cost,

• Structure cost. The indirect cost of the permanent positions is around 40ke.

OcamlPro

• Permanent staff. Mohamed Iguernelala at OCamlPro is currently maintaining the official ver-
sion of Alt-Ergo, and will spend a lot of time designing and prototyping improvements during this
project. So, people involved in the project are Fabrice Le Fessant (Scientific Advisor, involved for
4 person.months) and one or two R&D Engineers (among which Mohamed Iguernelala), involved
for 28 person.months, and a total cost of 233ke.

• Non-permanent staff. We plan to take master students as interns, for 20 person.months (i.e.
4 internships), for 10ke.

• Missions. We will need 10ke for project meetings, technical visits and international conferences.

• Other. We ask for 3ke for furniture, including laptops and related electronic devices.

• Structure cost. 173ke

3 Impact

3.1 Protection of Results

The basic guidelines for IP issues will be the following: each partner keeps its anterior ownership and
has the whole property of results obtained alone. New results coming from cooperative work between
partners will be shared among these partners. All the software developed inside the project, including
the extensible platform, will be distributed among the developers under an open-source license (the
exact license being yet to define, probably LGPL). A consortium agreement among all partners will be
established at the very beginning of the project (D6.3). We provide in appendix a refined description
of these principles in French. The description is only indicative.

26/ 30

Appel à projets générique 2014 SOPRANO

3.2 Dissemination and Valorisation

The short-term impact of the project includes scientific, technological, and industrial benefits.

Science: SOPRANO will mainly deliver a new framework for solver combination, allowing finer co-
operations while being less restrictive on the underlying theories. Other important outputs
of the project include new dedicated solvers for verification-relevant and hard-to-solve theories
such as floating-point arithmetic, and learning mechanisms adapted to CP-like reasoning. The
combination of CP and SMT has the potential to lead to new insights benefiting both fields.

Technology: The major output will be an open-source platform implementing the results, including
the cooperation mechanism. The platform will be licensed under LGPL (or equivalent) in order
to ensure maximal dissemination, and the Intellectual Property will be shared between CEA,
University of Paris-Sud, and OCamlPro. Besides, several existing solvers and verification tools
of the partners will be updated, including GATeL and Frama-C (CEA), SPARK (AdaCore),
Alt-Ergo (OCamlPro), Why3 (UPSud), and FDCC (Inria).

Industry: OCamlPro and AdaCore will take full advantage of the project to improve their lines of
products and services. OCamlPro will improve the current version of Alt-Ergo with reasoning
over floating-point arithmetic, hence getting a competitive advantage over other solvers. Ada-
Core will improve the SPARK tool to take full advantage of the new capabilities of solvers.
The expected benefit for the users of the SPARK technology is faster and much more precise
results than today on floating-point numbers, modular arithmetic, and more generally nonlinear
arithmetic. Finally, traditional industrial partners of CEA and UPSud (including Airbus [57],
Dassault [57], Esterel, Athos, EDF [28]) will directly benefit from improvements of the verifica-
tion tools of the project members.

We will deploy a pro-active communication strategy in order to maximize the project’s impact.
Besides the open-source platform, we will setup an open-access database of benchmarks and
OCamlPro will develop a webservice-based version of our solving technology for demonstration
purposes. We also intend to participate to well-established automatic solver competition, for example
the SMT competition. Finally, in order to maximize dissemination toward industry, we plan to have
a pool of industrial supporters following the project (taken among traditional partners of the
project members) and providing regular feedback. Especially, we plan a midterm workshop with
these supporters.

In a longer term, we expect that SOPRANO will have a scientific impact beyond verification,
since logic, constraints, and automated reasoning have a pervasive place in Computer Science. We can
cite for example: compilation, type systems, databases, higher-order provers and mechanized mathe-
matics, operational research, optimization and artificial intelligence. The project will also strengthen
the position of France (and of “Plateau de Saclay”) in formal methods and high-quality software en-
gineering. Finally, SOPRANO will participate in building better software verification tools (more
automated, more widely applicable, more efficient), broadening the use of formal methods in high-
quality software engineering and, in the end, improving the overall quality of digital infrastructures.

References

[1] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb. Symbolic path-oriented test data generation for floating-point
programs. In ICST 2013.

[2] T. Ball, N. Bjørner, L. de Moura, K. L. McMillan, and M. Veanes. Beyond first-order satisfaction: Fixed points,
interpolants, automata and polynomials. In A. Donaldson and D. Parker, editors, Model Checking Software, number
7385 in LNCS, pages 1–6. Springer Berlin Heidelberg, Jan. 2012.

[3] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam and static driver verifier: Technology transfer of formal
methods inside microsoft. In E. A. Boiten, J. Derrick, and G. Smith, editors, IFM, volume 2999 of LNCS, pages
1–20. Springer, 2004.

[4] S. Bardin and A. Gotlieb. FDCC: a combined approach for solving constraints over finite domains and arrays. In
Proc. of Constraint Programming, Artifical Intelligence, Operational Research (CPAIOR’12), May. 2012.

27/ 30

Appel à projets générique 2014 SOPRANO

[5] S. Bardin, P. Herrmann, and F. Perroud. An alternative to SAT-Based approaches for bit-vectors. In TACAS 2010.

[6] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in sat modulo theories. In M. Hermann
and A. Voronkov, editors, LPAR, volume 4246 of LNCS, pages 512–526. Springer, 2006.

[7] C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version 2.0. In Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, England), volume 13, page 14, 2010.

[8] M. S. Belaid, C. Michel, and M. Rueher. Résolution de contraintes sur les nombres à virgule flottante par une
approximation sur les nombres réels. In Sixièmes Journées Francophones de Programmation par Contraintes, 2010.

[9] M. S. Belaid, C. Michel, and M. Rueher. Boosting local consistency algorithms over floating-point numbers. In
M. Milano, editor, CP, LNCS, pages 127–140. Springer Berlin Heidelberg, 2012.

[10] N. Beldiceanu. Global constraints as graph properties on a structured network of elementary constraints of the same
type. In R. Dechter, editor, CP 2000, volume 1894 of LNCS, pages 52–66. Springer Berlin Heidelberg, 2000.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. Springer, 1999.

[12] B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jéron, B. Legeard, B. Marre, C. Michel, and M. Rueher. The V3F
project. In Proceedings of Workshop on Constraints in Software Testing, Verification and Analysis (CSTVA’06),
Nantes, France, Sep. 2006.

[13] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, A. Mahboubi, A. Mebsout, and G. Melquiond. A Simplex-based
extension of Fourier-Motzkin for solving linear integer arithmetic. In IJCAR. 2012.

[14] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011:
First International Workshop on Intermediate Verification Languages, Wroc law, Poland, August 2011.

[15] S. Boldo and G. Melquiond. Flocq: A unified library for proving floating-point algorithms in Coq. In E. Antelo,
D. Hough, and P. Ienne, editors, Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages 243–252,
Tübingen, Germany, 2011.

[16] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point computations. STVR, 2006.

[17] M. Carlier and A. Gotlieb. Filtering by ulp maximum. In ICTAI, pages 209–214. IEEE, 2011.

[18] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In K. Jensen and A. Podelski,
editors, TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

[19] J. W. Coleman and C. B. Jones. A structural proof of the soundness of rely/guarantee rules. Journal of Logic and
Computation, 17(4):807–841, 2007.

[20] H. Collavizza, M. Rueher, and P. Van Hentenryck. CPBPV: A constraint-programming framework for bounded
program verification. Constraints Journal, 15(2):238–264, 2010.

[21] S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. CC(X): Semantic combination of congruence closure with
solvable theories. ENTCS’08.

[22] S. Conchon, M. Iguernelala, and A. Mebsout. A collaborative framework for non-linear integer arithmetic reasoning
in Alt-Ergo. In SYNASC 2013.

[23] S. Conchon, G. Melquiond, C. Roux, and M. Iguernelala. Built-in treatment of an axiomatic floating-point theory
for SMT solvers. In SMT workshop, 2012.

[24] L. Correnson. Qed. Computing what remains to be proved. In J. M. Badger and K. Y. Rozier, editors, NASA
Formal Methods, volume 8430 of LNCS, pages 215–229. Springer, 2014.

[25] S. Cotton. Natural domain SMT: a preliminary assessment. In Formal Modeling and Analysis of Timed Systems.
2010.

[26] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi, editors, POPL, pages
238–252. ACM, 1977.

[27] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C - a software analysis
perspective. In G. Eleftherakis, M. Hinchey, and M. Holcombe, editors, SEFM, volume 7504 of LNCS, pages 233–247.
Springer, 2012.

[28] P. Cuoq, F. Kirchner, B. Yakobowski, S. Labbé, N. Thuy, and P. Hilsenkopf. Formal verification of software
important to safety using the Frama-C tool suite. In NPIC, July 2012.

[29] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communications of the ACM,
5(7):394–397, 1962.

[30] F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point implementation of an elementary function
using Gappa. Transactions on Computers, 60(2):242–253, 2011.

[31] L. de Moura and N. Bjørner. Model-based theory combination. Electr. Notes Theor. Comput. Sci., 198(2):37–49,
2008.

[32] L. de Moura and D. Jovanović. A model-constructing satisfiability calculus. In VMCAI 2013.

[33] T. Denmat, A. Gotlieb, and M. Ducassé. An abstract interpretation based combinator for modelling while loops in
constraint programming. In CP 2007.

28/ 30

Appel à projets générique 2014 SOPRANO

[34] T. Denmat, A. Gotlieb, and M. Ducasse. Improving constraint-based testing with dynamic linear relaxations. In
18th IEEE International Symposium on Software Reliability Engineering (ISSRE’ 2007), Trollhättan, Sweden, Nov.
2007.

[35] E. W. Dijkstra. A discipline of programming, volume 1. Prentice-Hall Englewood Cliffs, 1976.

[36] C. Dross, S. Conchon, J. Kanig, and A. Paskevich. Reasoning with triggers. In P. Fontaine and A. Goel, editors,
SMT@IJCAR, volume 20 of EPiC Series, pages 22–31. EasyChair, 2012.

[37] V. D’Silva, L. Haller, and D. Kroening. Abstract satisfaction. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, page 139–150, New York, NY, USA, 2014. ACM.

[38] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): fast decision procedures. In
R. Alur and D. A. Peled, editors, Computer Aided Verification, number 3114 in LNCS, pages 175–188. Springer
Berlin Heidelberg, Jan. 2004.

[39] P. Godefroid. Test generation using symbolic execution. In D. D’Souza, T. Kavitha, and J. Radhakrishnan, editors,
FSTTCS, volume 18 of LIPIcs, pages 24–33. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[40] A. Gotlieb. Euclide: A constraint-based testing framework for critical C programs. In ICST, pages 151–160. IEEE
Computer Society, 2009.

[41] A. Gotlieb. TCAS software verification using constraint programming. The Knowledge Engineering Review,
27(3):343–360, Sep. 2012.

[42] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint solving techniques. In Proc.
of Int. Symp. on Soft. Testing and Analysis (ISSTA’98), pages 53–62, 1998.

[43] A. Gotlieb, B. Marre, and M. Leconte. Constraint solving on modular integers. In the 9th Int. Workshop on
Constraint Modelling and Reformulation (ModRef’10), Sept. 2010.

[44] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-point logic with systematic abstraction. In
FMCAD, 2012.

[45] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In J. Launchbury and J. C. Mitchell,
editors, POPL, pages 58–70. ACM, 2002.

[46] J. M. Howe and A. King. Specialising finite domain programs using polyhedra. In A. M. D. Moreira and S. Demeyer,
editors, ECOOP Workshops, volume 1743 of LNCS, pages 258–259. Springer, 1999.

[47] D. Jovanović, C. Barrett, and L. de Moura. The design and implementation of the model constructing satisfiability
calculus. In Proceedings of 13th International Conference on Formal Methods in Computer-Aided Design, FMCAD
2013, Porland, Oregon, USA, 2013.

[48] D. Jovanović and L. de Moura. Solving non-linear arithmetic. In IJCAR 2012.

[49] D. Jovanović and L. de Moura. Cutting to the chase solving linear integer arithmetic. In N. Bjørner and V. Sofronie-
Stokkermans, editors, Automated Deduction – CADE-23, volume 6803, pages 338–353. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[50] M. Leconte and B. Berstel. Extending a CP solver with congruences as domains for program verification. In
B. Blanc, A. Gotlieb, and C. Michel, editors, Proceedings of the 1st workshop on Constraints in Software Testing,
Verification and Analysis (CSTVA ’06), pages 22–33, Nantes, France, 2006. IEEE Computer Society Press. Available
at http://www.irisa.fr/manifestations/2006/CSTVA06/.

[51] B. Marre. Toward automatic test data set selection using algebraic specifications and logic programming. In
K. Furukawa, editor, Proc. of the Eight Int. Conf. on Logic Prog. (ICLP’91), pages 202–219, Paris, Jun. 1991. MIT
Press.

[52] B. Marre and A. Arnould. Test sequences generation from lustre descriptions: Gatel. In ASE 2000.

[53] B. Marre and C. Michel. Improving the floating point addition and subtraction constraints. In CP 2010.

[54] K. L. McMillan. Lazy abstraction with interpolants. In T. Ball and R. B. Jones, editors, CAV, volume 4144 of
LNCS, pages 123–136. Springer, 2006.

[55] M. R. Mohammed Said Belaid, Claude Michel. Approximating floating-point operations to verify numerical pro-
grams. In 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Vali-
dated Numerics, 2010.

[56] D. Monniaux. Automatic modular abstractions for linear constraints. In Z. Shao and B. C. Pierce, editors, POPL,
pages 140–151. ACM, 2009.

[57] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate. Testing or formal verification: Do-178c alternatives and
industrial experience. IEEE Software, 30(3):50–57, 2013.

[58] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic program analysis: Precise integer
bounds for low-level code. In R. Jhala and A. Igarashi, editors, APLAS 2012: Proceedings of the 10th Asian
Symposium on Programming Languages and Systems, volume 7705 of Lecture Notes in Computer Science, pages
115–130. Springer, 2012.

[59] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions on Programming
Languages and Systems (TOPLAS), 1(2):245–257, 1979.

29/ 30

http://www.irisa.fr/manifestations/2006/CSTVA06/

Appel à projets générique 2014 SOPRANO

[60] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, Nov. 2006.

[61] O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause generation. Constraints, 14(3):357–391,
Sept. 2009.

[62] M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint solver based on abstract domains. In R. Giacobazzi,
J. Berdine, and I. Mastroeni, editors, VMCAI, volume 7737 of LNCS, pages 434–454. Springer, 2013.

[63] J. D. Scott, P. Flener, and J. Pearson. Bounded strings for constraint programming. In Tools with Artificial
Intelligence (ICTAI 2013). IEEE Computer Society, 2013.

[64] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in a boolean satisfiability
solver. In Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 279–285.
IEEE Press, 2001.

30/ 30

	Table of contents
	Summary
	Context, Position and Objectives
	Context
	Problem and objectives
	Method
	Challenges, Risks and Fallback
	Results
	State of the Art
	Position of the Project
	Adequacy to ANR Call For Project 2014
	Position w.r.t. anterior research projects from members of the consortium
	Position w.r.t. national and international research teams

	Scientific and Technical Program
	General Description
	Project Management
	Description by task
	Planning, summary
	Consortium
	Scientific Justification of Requested Resources

	Impact
	Protection of Results
	Dissemination and Valorisation

	References

